Skip to main content

Electrophysiological Characteristics of Dopamine Neurons: A 35-Year Update

  • Chapter
  • First Online:
Book cover Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 73))

Abstract

This chapter consists of four sections. The first section provides a general description of the electrophysiological characteristics of dopamine (DA) neurons in both the substantia nigra and ventral tegmental area. Emphasis is placed on the differences between DA and neighboring non-DA neurons. The second section discusses the ionic mechanisms underlying the generation of action potential in DA cells. Evidence is provided to suggest that these mechanisms differ not only between DA and non-DA neurons but also between DA cells located in different areas, with different projection sites and at different developmental stages. Some of the differences may play a critical role in the vulnerability of a DA neuron to cell death. The third section describes the firing patterns of DA cells. Data are presented to show that the current “80/160 ms” criteria for burst identification need to be revised and that the burst firing, originally described by Bunney et al., can be described as slow oscillations in firing rate. In the ventral tegmental area, the slow oscillations are, at least partially, derived from the prefrontal cortex and part of prefrontal information is transferred to DA cells indirectly through inhibitory neurons. The final section focuses on the feedback regulation of DA cells. New evidence suggests that DA autoreceptors are coupled to multiple effectors, and both D1 and D2-like receptors are involved in long-loop feedback control of DA neurons. Because of the presence of multiple feedback and nonfeedback pathways, the effect of a drug on a DA neuron can be far more complex than an inhibition or excitation. A better understanding of the intrinsic properties of DA neurons and their regulation by afferent input will, in time, help to point to the way to more effective and safer treatments for disorders including schizophrenia, drug addiction, and Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1-EBIO:

1-ethyl-2-benzimidazolinone

l-dopa:

3,4-dihydroxy-L-phenylalanine

4-AP:

4-aminopyridine

6-OHDA:

6-Hydroxydopamine

AHP:

Afterhyperpolarization

BLA:

Basolateral amygdale

CB:

Calbindin

cAMP:

Cyclic adenosine monophosphate

DA:

Dopamine

ERG:

Ether-a-go-go

GABA:

Gamma-aminobutyric acid

HVA:

High voltage-activated

IP3:

Inositol triphosphate

IK:

Intermediate conductance calcium-activated K channels

BK:

Large conductance calcium-activated K channels

LVA:

Low voltage-activated

mGluR:

Metabotropic glutamate receptors

NAc:

Nucleus accumbens

NMDA:

N-methyl-D-aspartic acid

PFC:

Prefrontal cortex

PKA:

Protein kinase A

SO:

slow oscillations

SK:

Small conductance calcium-activated K channels

SN:

Substantia nigra

VTA:

Ventral tegmental area

TTX:

Tetrodotoxin

TRP:

Transient receptor potential

TH:

Tyrosine hydroxylase

References

  • Aghajanian GK, Bunney BS (1973) Frontiers in Catecholamine Research. In: Usdin E, Snyder SH (eds) Central dopaminergic neurons: Neurophysiological identification and responses to drugs. Pergamon Press, New York, pp 643–648

    Google Scholar 

  • Aghajanian GK, Bunney BS (1974) Frontiers of Neurology and Neuroscience Research. In: Seeman P, Brown GM (eds) Pre- and postsynaptic feedback mechanisms in central dopaminergic neurons. University of Toronto Press, Toronto, Ontario, Canada, pp 4–11

    Google Scholar 

  • Aghajanian GK, Bunney BS (1977a) Pharmacological characterization of dopamine "autoreceptors" by microiontophoretic single-cell recording studies. Adv Biochem Psychopharmacol 16:433–438

    CAS  PubMed  Google Scholar 

  • Aghajanian GK, Bunney BS (1977b) Dopamine“autoreceptors”: pharmacological characterization by microiontophoretic single cell recording studies. Naunyn Schmiedebergs Arch Pharmacol 297:1–7

    Article  CAS  PubMed  Google Scholar 

  • Arencibia-Albite F, Paladini C, Williams JT, Jimenez-Rivera CA (2007) Noradrenergic modulation of the hyperpolarization- activated cation current (Ih) in dopamine neurons of the ventral tegmental area. Neuroscience 149:303–314

    Article  CAS  PubMed  Google Scholar 

  • Atherton JF, Bevan MD (2005) Ionic mechanisms underlying autonomous action potential generation in the somata and dendrites of GABAergic substantia nigra pars reticulata neurons in vitro. J Neurosci 25:8272–8281

    Article  CAS  PubMed  Google Scholar 

  • Beckstead MJ, Grandy DK, Wickman K, Williams JT (2004) Vesicular dopamine release elicits an inhibitory postsynaptic current in midbrain dopamine neurons. Neuron 42:939–946

    Article  CAS  PubMed  Google Scholar 

  • Bergquist F, Nissbrandt H (2003) Influence of r-type (Cav2.3) and t-type (Cav3.1–3.3) antagonists on nigral somatodendritic dopamine release measured by microdialysis. Neuroscience 120: 757–764

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom DA, Walters JR (1981) Neuronal responses of the globus pallidus to systemic administration of d-amphetamine: investigation of the involvement of dopamine, norepinephrine, and serotonin. J Neurosci 1:292–299

    CAS  PubMed  Google Scholar 

  • Bergstrom DA, Bromley SD, Walters JR (1984) Dopamine agonists increase pallidal unit activity: attenuation by agonist pretreatment and anesthesia. Eur J Pharmacol 100:3–12

    Article  CAS  PubMed  Google Scholar 

  • Bertorello AM, Hopfield JF, Aperia A, Greengard P (1990) Inhibition by dopamine of (Na(+)+K+) ATPase activity in neostriatal neurons through D1 and D2 dopamine receptor synergism. Nature 347: 386–388

    Article  CAS  PubMed  Google Scholar 

  • Blythe SN, Atherton JF, Bevan MD (2007) Synaptic activation of dendritic AMPA and NMDA receptors generates transient high-frequency firing in substantia nigra dopamine neurons in vitro. J Neurophysiol 97:2837–2850

    Article  CAS  PubMed  Google Scholar 

  • Bordi F, Meller E (1989) Enhanced behavioral stereotypies elicited by intrastriatal injection D1 and D2 dopamine agonists in intact rats. Brain Res 504:276–283

    Article  CAS  PubMed  Google Scholar 

  • Bouthenet ML, Souil E, Martres MP, Sokoloff P, Giros B, Schwartz JC (1991) Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor mRNA. Brain Res 564:203–219

    Article  CAS  PubMed  Google Scholar 

  • Bunney BS, Aghajanian GK (1975) Evidence for drug actions on both pre- and postsynaptic catecholamine receptors in the CNS. Psychopharmacol Bull 11:8–10

    CAS  PubMed  Google Scholar 

  • Bunney BS, Achajanian GK (1976) d-Amphetamine-induced inhibition of central dopaminergic neurons: mediation by a striato-nigral feedback pathway. Science 192:391–393

    Article  CAS  PubMed  Google Scholar 

  • Bunney BS, Aghajanian GK (1977) D-Amphetamine-induced inhibition of central dopaminergic neurons: direct effect or mediated by a striatonigral feedback pathway? Adv Biochem Psychopharmacol 16:577–582

    CAS  PubMed  Google Scholar 

  • Bunney BS, Aghajanian GK (1978) d-Amphetamine-induced depression of central dopamine neurons: evidence for mediation by both autoreceptors and a striato-nigral feedback pathway. Naunyn Schmiedebergs Arch Pharmacol 304:255–261

    Article  CAS  PubMed  Google Scholar 

  • Bunney BS, Aghajanian GK, Roth RH (1973a) Comparison of effects of L-dopa, amphetamine and apomorphine on firing rate of rat dopaminergic neurones. Nat New Biol 245:123–125

    CAS  PubMed  Google Scholar 

  • Bunney BS, Walters JR, Roth RH, Aghajanian GK (1973b) Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J Pharmacol Exp Ther 185:560–571

    CAS  PubMed  Google Scholar 

  • Caputi L, Hainsworth A, Guatteo E, Tozzi A, Stefani A, Spadoni F, Leach M, Bernardi G, Mercuri NB (2003) Actions of the sodium channel inhibitor 202W92 on rat midbrain dopaminergic neurons. Synapse 48:123–130

    Article  CAS  PubMed  Google Scholar 

  • Cardozo DL, Bean BP (1995) Voltage-dependent calcium channels in rat midbrain dopamine neurons: modulation by dopamine and GABAB receptors. J Neurophysiol 74:1137–1148

    CAS  PubMed  Google Scholar 

  • Carlson JH, Bergstrom DA, Walters JR (1986) Neurophysiological evidence that D-1 dopamine receptor blockade attenuates postsynaptic but not autoreceptor-mediated effects of dopamine agonists. Eur J Pharmacol 123:237–251

    Article  CAS  PubMed  Google Scholar 

  • Carlson JH, Bergstrom DA, Weick BG, Walters JR (1987) Neurophysiological investigation of effects of the D-1 agonist SKF 38393 on tonic activity of substantia nigra dopamine neurons. Synapse 1:411–416

    Article  CAS  PubMed  Google Scholar 

  • Cathala L, Paupardin-Tritsch D (1999) Effect of catecholamines on the hyperpolarization-activated cationic Ih and the inwardly rectifying potassium I(Kir) currents in the rat substantia nigra pars compacta. Eur J Neurosci 11:398–406

    Article  CAS  PubMed  Google Scholar 

  • Centonze D, Usiello A, Gubellini P, Pisani A, Borrelli E, Bernardi G, Calabresi P (2002) Dopamine D2 receptor-mediated inhibition of dopaminergic neurons in mice lacking D2L receptors. Neuropsychopharmacology 27:723–726

    Article  CAS  PubMed  Google Scholar 

  • Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, Meredith GE, Surmeier DJ (2007) 'Rejuvenation' protects neurons in mouse models of Parkinson's disease. Nature 447:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Chen BT, Moran KA, Avshalumov MV, Rice ME (2006) Limited regulation of somatodendritic dopamine release by voltage-sensitive Ca2+ channels contrasted with strong regulation of axonal dopamine release. J Neurochem 96:645–655

    Article  CAS  PubMed  Google Scholar 

  • Chiodo LA, Bannon MJ, Grace AA, Roth RH, and Bunney BS (1984) Evidence for the absence of impulse-regulating somatodendritic and synthesis-modulating nerve terminal autoreceptors on subpopulations of mesocortical dopamine neurons. Neuroscience 12: 1–16

    Google Scholar 

  • Cui G, Okamoto T, Morikawa H (2004) Spontaneous opening of T-type Ca2+ channels contributes to the irregular firing of dopamine neurons in neonatal rats. J Neurosci 24:11079–11087

    Article  CAS  PubMed  Google Scholar 

  • Cui G, Bernier BE, Harnett MT, Morikawa H (2007) Differential regulation of action potential- and metabotropic glutamate receptor-induced Ca2+ signals by inositol 1, 4, 5-trisphosphate in dopaminergic neurons. J Neurosci 27:4776–4785

    Article  CAS  PubMed  Google Scholar 

  • Davila V, Yan Z, Craciun LC, Logothetis D, Sulzer D (2003) D3 dopamine Autoreceptors Do Not Activate G-protein-Gated Inwardly rectifying potassium channel currents in substantia nigra dopamine neurons. J Neurosci 23:5693–5697

    CAS  PubMed  Google Scholar 

  • Diaz J, Pilon C, Le Foll B, Gros C, Triller A, Schwartz J-C, Sokoloff P (2000) Dopamine D3 receptors expressed by all mesencephalic dopamine neurons. J Neurosci 20:8677–8684

    CAS  PubMed  Google Scholar 

  • Durante P, Cardenas CG, Whittaker JA, Kitai ST, Scroggs RS (2004) Low-threshold L-type calcium channels in rat dopamine neurons. J Neurophysiol 91:1450–1454

    Article  CAS  PubMed  Google Scholar 

  • Einhorn LC, Johansen PA, White FJ (1988) Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: studies in the ventral tegmental area. J Neurosci 8:100–112

    CAS  PubMed  Google Scholar 

  • Fiorillo CD, Williams JT (1998) Glutamate mediates an inhibitory postsynaptic potential in dopamine neurons. Nature 394: 78–82

    Article  CAS  PubMed  Google Scholar 

  • Ford CP, Mark GP, Williams JT (2006) Properties and opioid inhibition of mesolimbic dopamine neurons vary according to target location. J Neurosci 26:2788–2797

    Article  CAS  PubMed  Google Scholar 

  • Franz O, Liss B, Neu A, Roeper J (2000) Single-cell mRNA expression of HCN1 correlates with a fast gating phenotype of hyperpolarization-activated cyclic nucleotide-gated ion channels (Ih) in central neurons. Eur J Neurosci 12:2685–2693

    Article  CAS  PubMed  Google Scholar 

  • Fujimura K, Matsuda Y (1989) Autogenous oscillatory potentials in neurons of the guinea pig substantia nigra pars compacta in vitro. Neurosci Lett 104:53–57

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Liu CL, Yang S, Jin GZ, Bunney BS, Shi WX (2007) Functional coupling between the prefrontal cortex and dopamine neurons in the ventral tegmental area. J Neurosci 27:5414–5421

    Article  CAS  PubMed  Google Scholar 

  • Gariano RF, Sawyer SF, Tepper JM, Young SJ, Groves PM (1989a) Mesocortical dopaminergic neurons. 2. Electrophysiological consequences of terminal autoreceptor activation. Brain Res Bull 22:517–523

    Article  CAS  PubMed  Google Scholar 

  • Gariano RF, Tepper JM, Sawyer SF, Young SJ, Groves PM (1989b) Mesocortical dopaminergic neurons. 1. Electrophysiological properties and evidence for soma-dendritic autoreceptors. Brain Res Bull 22:511–516

    Article  CAS  PubMed  Google Scholar 

  • Gentet LJ, Williams SR (2007) Dopamine gates action potential backpropagation in midbrain dopaminergic neurons. J Neurosci 27:1892–1901

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR (1984) The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems. Nature 311:461–464

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR (1985) The neostriatal mosaic. I. Compartmental organization of projections from the striatum to the substantia nigra in the rat. J Comp Neurol 236:454–476

    Article  CAS  PubMed  Google Scholar 

  • Grace AA (1990) Evidence for the functional compartmentalization of spike generating regions of rat midbrain dopamine neurons recorded in vitro. Brain Res 524:31–41

    Article  CAS  PubMed  Google Scholar 

  • Grace AA, Bunney BS (1980) Nigral dopamine neurons: intracellular recording and identification with L-dopa injection and histofluorescence. Science 210:654–656

    Article  CAS  PubMed  Google Scholar 

  • Grace AA, Bunney BS (1983) Intracellular and extracellular electrophysiology of nigral dopaminergic neurons–1. Identification and characterization. Neuroscience 10:301–315

    Article  CAS  PubMed  Google Scholar 

  • Grace AA, Bunney BS (1984) The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 4:2877–2890

    CAS  PubMed  Google Scholar 

  • Grace AA, Bunney BS (1985) Low doses of apomorphine elicit two opposing influences on dopamine cell electrophysiology. Brain Res 333:285–298

    Article  CAS  PubMed  Google Scholar 

  • Grace AA, Onn SP (1989) Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro. J Neurosci 9:3463–3481

    CAS  PubMed  Google Scholar 

  • Guyenet PG, Aghajanian GK (1978) Antidromic identification of dopaminergic and other output neurons of the rat substantia nigra. Brain Res 150:69–84

    Article  CAS  PubMed  Google Scholar 

  • Hahn J, Tse TE, Levitan ES (2003) Long-term K+ channel-mediated dampening of dopamine neuron excitability by the antipsychotic drug haloperidol. J Neurosci 23:10859–10866

    CAS  PubMed  Google Scholar 

  • Hahn J, Kullmann PH, Horn JP, Levitan ES (2006) D2 autoreceptors chronically enhance dopamine neuron pacemaker activity. J Neurosci 26:5240–5247

    Article  CAS  PubMed  Google Scholar 

  • Harris NC (1992) Sensitivity of transient outward rectification to ion channel blocking agents in guinea-pig substantia nigra pars compacta neurones in vitro. Brain Res 596:325–329

    Article  CAS  PubMed  Google Scholar 

  • Harris NC, Webb C, Greenfield SA (1989) A possible pacemaker mechanism in pars compacta neurons of the guinea-pig substantia nigra revealed by various ion channel blocking agents. Neuroscience 31:355–362

    Article  CAS  PubMed  Google Scholar 

  • Hausser M, Stuart G, Racca C, Sakmann B (1995) Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron 15:637–647

    Article  CAS  PubMed  Google Scholar 

  • Huang KX, Walters JR (1992) D1 receptor stimulation inhibits dopamine cell activity after reserpine treatment but not after chronic SCH 23390: an effect blocked by N-methyl-D-aspartate antagonists. J Pharmacol Exp Ther 260:409–416

    CAS  PubMed  Google Scholar 

  • Hyland BI, Reynolds JN, Hay J, Perk CG, Miller R (2002) Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114:475–492

    Article  Google Scholar 

  • Innis RB, Aghajanian GK (1987) Pertussis toxin blocks autoreceptor-mediated inhibition of dopaminergic neurons in rat substantia nigra. Brain Res 411:139–143

    Article  CAS  PubMed  Google Scholar 

  • Ishiwa D, Nagata I, Ohtsuka T, Itoh H, Kamiya Y, Ogawa K, Sakai M, Sekino N, Yamada Y, Goto T, Andoh T (2008) Differential effects of isoflurane on A-type and delayed rectifier K channels in rat substantia nigra. Eur J Pharmacol 580:122–129

    Article  CAS  PubMed  Google Scholar 

  • Ji H, Shepard PD (2006) SK Ca2+-activated K+ channel ligands alter the firing pattern of dopamine-containing neurons in vivo. Neuroscience 140:623–633

    Article  CAS  PubMed  Google Scholar 

  • Johnson SW, North RA (1992) Two types of neurone in the rat ventral tegmental area and their synaptic inputs. J Physiol 450:455–468

    CAS  PubMed  Google Scholar 

  • Johnson SW, Seutin V, North RA (1992) Burst firing in dopamine neurons induced by N-methyl-D-aspartate: role of electrogenic sodium pump. Science 258:665–667

    Article  CAS  PubMed  Google Scholar 

  • Kalivas PW, Duffy P (1991) A comparison of axonal and somatodendritic dopamine release using in vivo dialysis. J Neurochem 56:961–967

    Article  CAS  PubMed  Google Scholar 

  • Kamata K, Rebec GV (1983) Dopaminergic and neostriatal neurons: dose-dependent changes in sensitivity to amphetamine following long-term treatment. Neuropharmacology 22:1377–1382

    Article  CAS  PubMed  Google Scholar 

  • Kang Y, Kitai ST (1993a) A whole cell patch-clamp study on the pacemaker potential in dopaminergic neurons of rat substantia nigra compacta. Neurosci Res 18:209–221

    Article  CAS  PubMed  Google Scholar 

  • Kang Y, Kitai ST (1993b) Calcium spike underlying rhythmic firing in dopaminergic neurons of the rat substantia nigra. Neurosci Res 18:195–207

    Article  CAS  PubMed  Google Scholar 

  • Katayama J, Akaike N, Nabekura J (2003) Characterization of pre- and post-synaptic metabotropic glutamate receptor-mediated inhibitory responses in substantia nigra dopamine neurons. Neurosci Res 45:101–115

    Article  CAS  PubMed  Google Scholar 

  • Kelland MD, Freeman AS, Chiodo LA (1988) SKF 38393 alters the rate-dependent D2-mediated inhibition of nigrostriatal but not mesoaccumbens dopamine neurons. Synapse 2:416–423

    Article  Google Scholar 

  • Kelland MD, Freeman AS, Chiodo LA (1989) Chloral hydrate anesthesia alters the responsiveness of identified midbrain dopamine neurons to dopamine agonist administration. Synapse 3:30–37

    Article  Google Scholar 

  • Kim SH, Choi YM, Jang JY, Chung S, Kang YK, Park MK (2007) Nonselective cation channels are essential for maintaining intracellular Ca2+ levels and spontaneous firing activity in the midbrain dopamine neurons. Pflugers Arch 455:309–321

    Article  CAS  PubMed  Google Scholar 

  • Kita T, Kita H, Kitai ST (1986) Electrical membrane properties of rat substantia nigra compacta neurons in an in vitro slice preparation. Brain Res 372:21–30

    Article  CAS  PubMed  Google Scholar 

  • Kitai ST, Shepard PD, Callaway JC, Scroggs R (1999) Afferent modulation of dopamine neuron firing patterns. Curr Opin Neurobiol 9:690–697

    Article  CAS  PubMed  Google Scholar 

  • Koeltzow TE, Xu M, Cooper DC, Hu XT, Tonegawa S, Wolf ME, White FJ (1998) Alterations in dopamine release but not dopamine autoreceptor function in dopamine D3 receptor mutant mice. J Neurosci 18:2231–2238

    CAS  PubMed  Google Scholar 

  • Koyama S, Appel SB (2006a) Characterization of M-current in ventral tegmental area dopamine neurons. J Neurophysiol 96: 535–543

    Article  CAS  PubMed  Google Scholar 

  • Koyama S, Appel SB (2006b) A-type K+ current of dopamine and GABA neurons in the ventral tegmental area. J Neurophysiol 96:544–554

    Article  CAS  PubMed  Google Scholar 

  • Koyama S, Kanemitsu Y, Weight FF (2005) Spontaneous activity and properties of two types of principal neurons from the ventral tegmental area of rat. J Neurophysiol 93:3282–3293

    Article  PubMed  Google Scholar 

  • Kreiss DS, Bergstrom DA, Gonzalez AM, Huang KX, Sibley DR, Walters JR (1995) Dopamine receptor agonist potencies for inhibition of cell firing correlate with dopamine D3 receptor binding affinities. Eur J Pharmacol 277:209–214

    Article  CAS  PubMed  Google Scholar 

  • Lacey MG, Mercuri NB, North RA (1987) Dopamine acts on D2 receptors to increase potassium conductance in neurones of the rat substantia nigra zona compacta. J Physiol 392:397–416

    CAS  PubMed  Google Scholar 

  • Lacey MG, Mercuri NB, North RA (1988) On the potassium conductance increase activated by GABAB and dopamine D2 receptors in rat substantia nigra neurones. J Physiol 401:437–453

    CAS  PubMed  Google Scholar 

  • Lacey MG, Mercuri NB, North RA (1989) Two cell types in rat substantia nigra zona compacta distinguished by membrane properties and the actions of dopamine and opioids. J Neurosci 9: 1233–1241

    CAS  PubMed  Google Scholar 

  • Lammel S, Hetzel A, Hackel O, Jones I, Liss B, Roeper J (2008) Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57:760–773

    Article  CAS  PubMed  Google Scholar 

  • Lee CR, Tepper JM (2007) Morphological and physiological properties of parvalbumin- and calretinin-containing gamma-aminobutyric acidergic neurons in the substantia nigra. J Comp Neurol 500:958–972

    Article  CAS  PubMed  Google Scholar 

  • Lejeune F, Millan MJ (1995) Activation of dopamine D3 autoreceptors inhibits firing of ventral tegmental dopaminergic neurones in vivo. Eur J Pharmacol 275:R7–9

    Article  CAS  PubMed  Google Scholar 

  • Leysen J, Gommeren W, Mertens J, Luyten W, Pauwels P, Ewert M, Seeburg P (1993) Comparison of in vitro binding properties of a series of dopamine antagonists and agonists for cloned human dopamine D2S and D2L receptors and for D2 receptors in rat striatal and mesolimbic tissues, using [125I] 2′-iodospiperone. Psychopharmacology (Berl) 110:27–36

    Article  CAS  Google Scholar 

  • Liss B, Franz O, Sewing S, Bruns R, Neuhoff H, Roeper J (2001) Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChip3.1 transcription. EMBO J 20: 5715–5724

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Dore J, Chen X (2007) Calcium influx through L-type channels generates protein kinase M to induce burst firing of dopamine cells in the rat ventral tegmental area. J Biol Chem 282:8594–8603

    Article  CAS  PubMed  Google Scholar 

  • Lu XY, Churchill L, Kalivas PW (1997) Expression of D1 receptor mRNA in projections from the forebrain to the ventral tegmental area. Synapse 25:205–214

    Article  CAS  PubMed  Google Scholar 

  • Lu XY, Ghasemzadeh MB, Kalivas PW (1998) Expression of D1 receptor, D2 receptor, substance P and enkephalin messenger RNAs in the neurons projecting from the nucleus accumbens. Neuroscience 82:767–780

    Article  CAS  PubMed  Google Scholar 

  • Luo AH, Georges FE, Aston-Jones GS (2008) Novel neurons in ventral tegmental area fire selectively during the active phase of the diurnal cycle. Eur J Neurosci 27:408–422

    Article  PubMed  Google Scholar 

  • Margolis EB, Lock H, Hjelmstad GO, Fields HL (2006) The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons? J Physiol 577:907–924

    Article  CAS  PubMed  Google Scholar 

  • Meador-Woodruff JH, Mansour A (1991) A. E. Bennett Award paper. Expression of the dopamine D2 receptor gene in brain. Biol Psychiatry 30:985–1007

    Article  CAS  PubMed  Google Scholar 

  • Mercuri NB, Bonci A, Calabresi P, Stefani A, Bernardi G (1995) Properties of the hyperpolarization-activated cation current Ih in rat midbrain dopaminergic neurons. Eur J Neurosci 7:462–469

    Article  CAS  PubMed  Google Scholar 

  • Mercuri NB, Bonci A, Calabresi P, Stratta F, Stefani A, Bernardi G (1994) Effects of dihydropyridine calcium antagonists on rat midbrain dopaminergic neurones. Br J Pharmacol 113:831–838

    CAS  PubMed  Google Scholar 

  • Mercuri NB, Saiardi A, Bonci A, Picetti R, Calabresi P, Bernardi G, Borrelli E (1997) Loss of autoreceptor function in dopaminergic neurons from dopamine D2 receptor deficient mice. Neuroscience 79:323–327

    Article  CAS  PubMed  Google Scholar 

  • Mereu G, Collu M, Ongini E, Biggio G, Gessa GL (1985) SCH 23390, a selective dopamine D1 antagonist, activates dopamine neurons but fails to prevent their inhibition by apomorphine. Eur J Pharmacol 111:393–396

    Article  CAS  PubMed  Google Scholar 

  • Morikawa H, Khodakhah K, Williams JT (2003) Two intracellular pathways mediate metabotropic glutamate receptor-induced Ca2+ mobilization in dopamine neurons. J Neurosci 23:149–157

    CAS  PubMed  Google Scholar 

  • Morikawa H, Imani F, Khodakhah K, Williams JT (2000) Inositol 1,4,5-triphosphate-evoked responses in midbrain dopamine neurons. J Neurosci 20:RC103

    CAS  PubMed  Google Scholar 

  • Nakanishi H, Kita H, Kitai ST (1987) Intracellular study of rat substantia nigra pars reticulata neurons in an in vitro slice preparation: electrical membrane properties and response characteristics to subthalamic stimulation. Brain Res 437:45–55

    Article  CAS  PubMed  Google Scholar 

  • Napier TC, Givens BS, Schulz DW, Bunney BS, Breese GR, Mailman RB (1986) SCH23390 effects on apomorphine-induced responses of nigral dopaminergic neurons. J Pharmacol Exp Ther 236: 838–845

    CAS  PubMed  Google Scholar 

  • Nedergaard S (1999) Regulation of action potential size and excitability in substantia nigra compacta neurons: sensitivity to 4-aminopyridine. J Neurophysiol 82:2903–2913

    CAS  PubMed  Google Scholar 

  • Nedergaard S (2004) A Ca2+-independent slow afterhyperpolarization in substantia nigra compacta neurons. Neuroscience 125:841–852

    Article  CAS  PubMed  Google Scholar 

  • Nedergaard S, Greenfield SA (1992) Sub-populations of pars compacta neurons in the substantia nigra: the significance of qualitatively and quantitatively distinct conductances. Neuroscience 48: 423–437

    Article  CAS  PubMed  Google Scholar 

  • Nedergaard S, Flatman JA, Engberg I (1993) Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. J Physiol 466:727–747

    CAS  PubMed  Google Scholar 

  • Neuhoff H, Neu A, Liss B, Roeper J (2002) I(h) channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. J Neurosci 22:1290–1302

    CAS  PubMed  Google Scholar 

  • Piercey MF, Hoffmann WE, Smith MW, Hyslop DK (1996) Inhibition of dopamine neuron firing by pramipexole, a dopamine D3 receptor-preferring agonist: comparison to other dopamine receptor agonists. Eur J Pharmacol 312:35–44

    Article  CAS  PubMed  Google Scholar 

  • Ping HX, Shepard PD (1996) Apamin-sensitive Ca(2+)-activated K+ channels regulate pacemaker activity in nigral dopamine neurons. Neuroreport 7:809–814

    Article  CAS  PubMed  Google Scholar 

  • Pinnock RD (1984) The actions of antipsychotic drugs on dopamine receptors in the rat substantia nigra. Br J Pharmacol 81:631–635

    CAS  PubMed  Google Scholar 

  • Pinnock RD (1985) Neurotensin depolarizes substantia nigra dopamine neurones. Brain Res 338:151–154

    Article  CAS  PubMed  Google Scholar 

  • Prisco S, Natoli S, Bernardi G, Mercuri NB (2002) Group I metabotropic glutamate receptors activate burst firing in rat midbrain dopaminergic neurons. Neuropharmacology 42:289–296

    Article  CAS  PubMed  Google Scholar 

  • Puopolo M, Raviola E, Bean BP (2007) Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. J Neurosci 27:645–656

    Article  CAS  PubMed  Google Scholar 

  • Richards CD, Shiroyama T, Kitai ST (1997) Electrophysiological and immunocytochemical characterization of GABA and dopamine neurons in the substantia nigra of the rat. Neuroscience 80:545–557

    Article  CAS  PubMed  Google Scholar 

  • Robinson S, Smith DM, Mizumori SJY, Palmiter RD (2004) From the cover: firing properties of dopamine neurons in freely moving dopamine-deficient mice: Effects of dopamine receptor activation and anesthesia. Proc Natl Acad Sci USA 101:13329–13334

    Article  CAS  PubMed  Google Scholar 

  • Sanghera MK, Trulson ME, German DC (1984) Electrophysiological properties of mouse dopamine neurons: in vivo and in vitro studies. Neuroscience 12:793–801

    Article  CAS  PubMed  Google Scholar 

  • Sarpal D, Koenig JI, Adelman JP, Brady D, Prendeville LC, Shepard PD (2004) Regional distribution of SK3 mRNA-containing neurons in the adult and adolescent rat ventral midbrain and their relationship to dopamine-containing cells. Synapse 53:104–113

    Article  CAS  PubMed  Google Scholar 

  • Scroggs RS, Cardenas CG, Whittaker JA, Kitai ST (2001) Muscarine reduces calcium-dependent electrical activity in substantia nigra dopaminergic neurons. J Neurophysiol 86:2966–2972

    CAS  PubMed  Google Scholar 

  • Segev D, Korngreen A (2007) Kinetics of two voltage-gated K+ conductances in substantia nigra dopaminergic neurons. Brain Res 1173:27–35

    Article  CAS  PubMed  Google Scholar 

  • Serodio P, Rudy B (1998) Differential expression of Kv4 K+ channel subunits mediating subthreshold transient K+ (A-type) currents in rat brain. J Neurophysiol 79:1081–1091

    CAS  PubMed  Google Scholar 

  • Seutin V, Massotte L, Scuvee-Moreau J, Dresse A (1998) Spontaneous apamin-sensitive hyperpolarizations in dopaminergic neurons of neonatal rats. J Neurophysiol 80:3361–3364

    CAS  PubMed  Google Scholar 

  • Seutin V, Mkahli F, Massotte L, Dresse A (2000) Calcium release from internal stores is required for the generation of spontaneous hyperpolarizations in dopaminergic neurons of neonatal rats. J Neurophysiol 83:192–197

    CAS  PubMed  Google Scholar 

  • Seutin V, Massotte L, Renette MF, Dresse A (2001) Evidence for a modulatory role of Ih on the firing of a subgroup of midbrain dopamine neurons. Neuroreport 12:255–258

    Article  CAS  PubMed  Google Scholar 

  • Shepard PD, German DC (1984) A subpopulation of mesocortical dopamine neurons possesses autoreceptors. Eur J Pharmacol 98:455–456

    Article  CAS  PubMed  Google Scholar 

  • Shepard PD, Bunney BS (1988) Effects of apamin on the discharge properties of putative dopamine-containing neurons in vitro. Brain Res 463:380–384

    Article  CAS  PubMed  Google Scholar 

  • Shepard PD, Bunney BS (1991) Repetitive firing properties of putative dopamine-containing neurons in vitro: regulation by an apamin-sensitive Ca(2+)-activated K+ conductance. Exp Brain Res 86:141–150

    Article  CAS  PubMed  Google Scholar 

  • Shepard PD, Canavier CC, Levitan ES (2007) Ether-a-go-go related gene potassium channels: what's all the buzz about? Schizophr Bull 33:1263–1269

    Article  PubMed  Google Scholar 

  • Shi WX (2005) Slow oscillatory firing: a major firing pattern of dopamine neurons in the ventral tegmental area. J Neurophysiol 94:3516–3522

    Article  CAS  PubMed  Google Scholar 

  • Shi WX, Pun CL, Zhou Y (2004) Psychostimulants induce low- frequency oscillations in the firing activity of dopamine neurons. Neuropsychopharmacology 29:2160–2167

    Article  CAS  PubMed  Google Scholar 

  • Shi WX, Pun CL, Smith PL, Bunney BS (2000a) Endogenous DA-mediated feedback inhibition of DA neurons: involvement of both D(1)- and D(2)-like receptors. Synapse 35:111–119

    Article  CAS  PubMed  Google Scholar 

  • Shi WX, Zhang XY, Pun CL, Bunney BS (2007) Clozapine blocks D-amphetamine-induced excitation of dopamine neurons in the ventral tegmental area. Neuropsychopharmacology 32:1922–1928

    Article  CAS  PubMed  Google Scholar 

  • Shi WX, Smith PL, Pun CL, Millet B, Bunney BS (1997) D1–D2 interaction in feedback control of midbrain dopamine neurons. J Neurosci 17:7988–7994

    CAS  PubMed  Google Scholar 

  • Shi WX, Pun CL, Zhang XX, Jones MD, Bunney BS (2000b) Dual effects of D-amphetamine on dopamine neurons mediated by dopamine and nondopamine receptors. J Neurosci 20:3504–3511

    CAS  PubMed  Google Scholar 

  • Silva NL, Bunney BS (1988) Intracellular studies of dopamine neurons in vitro: pacemakers modulated by dopamine. Eur J Pharmacol 149:307–315

    Article  CAS  PubMed  Google Scholar 

  • Skirboll LR, Grace AA, Bunney BS (1979) Dopamine auto- and postsynaptic receptors: electrophysiological evidence for differential sensitivity to dopamine agonists. Science 206:80–82

    Article  CAS  PubMed  Google Scholar 

  • Stanford IM, Lacey MG (1996) Electrophysiological investigation of adenosine trisphosphate-sensitive potassium channels in the rat substantia nigra pars reticulata. Neuroscience 74:499–509

    Article  CAS  PubMed  Google Scholar 

  • Takada M, Kang Y, Imanishi M (2001) Immunohistochemical localization of voltage-gated calcium channels in substantia nigra dopamine neurons. Eur J Neurosci 13:757–762

    Article  CAS  PubMed  Google Scholar 

  • Ugedo L, Grenhoff J, Svensson TH (1988) Effects of nimodipine on the physiological activity of A10-DA neurons. Acta Physiol Scand:33

    Google Scholar 

  • Ungless MA, Magill PJ, Bolam JP (2004) Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 303:2040–2042

    Article  CAS  PubMed  Google Scholar 

  • Vandecasteele M, Glowinski J, Deniau JM, Venance L (2008) Chemical transmission between dopaminergic neuron pairs. Proc Natl Acad Sci USA 105:4904–4909

    Article  CAS  PubMed  Google Scholar 

  • Wachtel SR, Hu XT, Galloway MP, White FJ (1989) D1 dopamine receptor stimulation enables the postsynaptic, but not autoreceptor, effects of D2 dopamine agonists in nigrostriatal and mesoaccumbens dopamine systems. Synapse 4:327–346

    Article  CAS  PubMed  Google Scholar 

  • Walsh JP, Cepeda C, Buchwald NA, Levine MS (1991) Neurophysiological maturation of cat substantia nigra neurons: evidence from in vitro studies. Synapse 7:291–300

    Article  CAS  PubMed  Google Scholar 

  • Walters JR, Bergstrom DA, Carlson JH, Chase TN, Braun AR (1987) D1 dopamine receptor activation required for postsynaptic expression of D2 agonist effects. Science 236:719–722

    Article  CAS  PubMed  Google Scholar 

  • Washio H, Takigachi-Hayashi K, Konishi S (1999) Early postnatal development of substantia nigra neurons in rat midbrain slices: hyperpolarization-activated inward current and dopamine-activated current. Neurosci Res 34:91–101

    Article  CAS  PubMed  Google Scholar 

  • Watts AE, Williams JT, Henderson G (1996) Baclofen inhibition of the hyperpolarization-activated cation current, Ih, in rat substantia nigra zona compacta neurons may be secondary to potassium current activation. J Neurophysiol 76:2262–2270

    CAS  PubMed  Google Scholar 

  • White FJ (1987) D-1 dopamine receptor stimulation enables the inhibition of nucleus accumbens neurons by a D-2 receptor agonist. Eur J Pharmacol 135:101–105

    Article  CAS  PubMed  Google Scholar 

  • Wilson CJ, Callaway JC (2000) Coupled oscillator model of the dopaminergic neuron of the substantia nigra. Journal of neurophysiology 83:3084–3100

    Google Scholar 

  • Wicke K, Garcia-Ladona J (2001) The dopamine D3 receptor partial agonist, BP 897, is an antagonist at human dopamine D3 receptors and at rat somatodendritic dopamine D3 receptors. Eur J Pharmacol 424:85–90

    Article  CAS  PubMed  Google Scholar 

  • Wolfart J, Roeper J (2002) Selective coupling of t-type calcium channels to sk potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. J Neurosci 22:3404–3413

    CAS  PubMed  Google Scholar 

  • Wolfart J, Neuhoff H, Franz O, Roeper J (2001) Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J Neurosci 21:3443–3456

    CAS  PubMed  Google Scholar 

  • Yanovsky Y, Zhang W, Misgeld U (2005) Two pathways for the activation of small-conductance potassium channels in neurons of substantia nigra pars reticulata. Neuroscience 136:1027–1036

    Article  CAS  PubMed  Google Scholar 

  • Yung KK, Bolam JP, Smith AD, Hersch SM, Ciliax BJ, Levey AI (1995) Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 65:709–730

    Article  CAS  PubMed  Google Scholar 

  • Yung WH, Hausser MA, Jack JJ (1991) Electrophysiology of dopaminergic and non-dopaminergic neurones of the guinea-pig substantia nigra pars compacta in vitro. J Physiol 436:643–667

    CAS  PubMed  Google Scholar 

  • Zhang D, Yang S, Jin GZ, Bunney BS, Shi WX (2008) Oscillatory firing of dopamine neurons: differences between cells in the substantia nigra and ventral tegmental area. Synapse 62:169–175

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Liu Y, Chen X (2005) Carbachol induces burst firing of dopamine cells in the ventral tegmental area by promoting calcium entry through L-type channels in the rat. J Physiol 568:469–481

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Bunney BS, Shi WX (2006) Differential effects of cocaine on firing rate and pattern of dopamine neurons: role of alpha1 receptors and comparison with L-dopa and apomorphine. J Pharmacol Exp Ther 317:196–201

    Article  CAS  PubMed  Google Scholar 

  • Zolles G, Kloker N, Wenzel D, Weisser-Thomas J, Fleischmann BK, Roeper J, Fakler B (2006) Pacemaking by HCN channels requires interaction with phosphoinositides. Neuron 52:1027–1036

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by a NARSAD Independent Investigator Award and NIDA DA12944.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Xing Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag/Wien Printed in Germany

About this chapter

Cite this chapter

Shi, WX. (2009). Electrophysiological Characteristics of Dopamine Neurons: A 35-Year Update. In: Giovanni, G., Di Matteo, V., Esposito, E. (eds) Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra. Journal of Neural Transmission. Supplementa, vol 73. Springer, Vienna. https://doi.org/10.1007/978-3-211-92660-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-92660-4_8

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-92659-8

  • Online ISBN: 978-3-211-92660-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics