Skip to main content

Substantia Nigra Control of Basal Ganglia Nuclei

  • Chapter
  • First Online:

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 73))

Abstract

The substantia nigra, located in the ventral mesencephalon, is one of the five nuclei that constitute the basal ganglia circuit, which controls voluntary movements.

It is divided into the pars compacta and the pars reticulata, which mainly contain dopaminergic and GABAergic cells respectively. Here we overview the electrophysiological properties of these substantia nigra neurons in the pars compacta and reticulata, together with their synaptic connections, and discuss the functional effects of dopaminergic and GABAergic inputs within the basal ganglia. We also examine the phenomenon that when a deficiency of dopamine (DA) occurs (e.g. in Parkinson's disease), there is an aberrant synaptic plasticity in the basal ganglia.

Moreover, we point out that the appearance of an altered pattern of neuronal firing (beta-oscillations) and synchrony among neurons in the subthalamic nucleus, the internal globus pallidus, and the substantia nigra pars reticulata has been related to motor symptoms and possibly, persistent degeneration of DA-containing neurons.

Finally, we believe that, based on pathophysiological data, new and significant targets for therapeutic intervention can be identified and tested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

DA:

Dopamine

GP:

Globus pallidus

GPi:

Internal part of the globus pallidus

GPe:

External part of the globus pallidus

SN:

Substantia nigra

SNr:

Substantia nigra pars reticulata

SNc:

Substantia nigra pars compacta

STN:

Subthalamic nucleus

SC:

Superior colliculus

TANs:

Tonically active interneurons

PD:

Parkinson's disease

6-OHDA:

6-hydroxydopamine

MPTP:

1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine

5-HT:

Serotonin

NA:

Noradrenaline

TTX:

Tetrodotoxin

cAMP:

Cyclic adenosine monophosphate

PKA:

Protein kinase A

IP3:

Inositol thriphosphate

GIRK:

G-protein linked potassium currents

SK:

Small-conductance Ca2+-dependent K+ channels

HCN:

Hyperpolarization-activated cation current

HVA:

High voltage-activated calcium channels

TRP:

Transient receptor potential channels

IPSPs:

Inhibitory postsynaptic potentials

REM:

Rapid eye movements

FEF:

Frontal eye fields

References

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE, Crutcher ME (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271

    Article  CAS  PubMed  Google Scholar 

  • Akopian G, Musleh W, Smith R (2000) Functional state of corticostriatal synapses determines their expression of short- and long-term plasticity. Synapse 38(3):271–280

    Article  CAS  PubMed  Google Scholar 

  • Anderson JJ, Chase TN, Engber TM (1992) Differential effect of subthalamic nucleus ablation on dopamine D1 and D2 agonist-induced rotation in 6-hydroxydopamine-lesioned rats. Brain Res 588:307–310

    Article  CAS  PubMed  Google Scholar 

  • Arsenault MY, Parent A, Séguéla P (1988) Distribution and morphological characteristics of dopamine-immunoreactive neurons in the midbrain of the squirrel monkey (Saimiri sciureus). J Comp Neurol 267(4):489–506

    Article  CAS  PubMed  Google Scholar 

  • Atherton JF, Bevan MD (2005) Ionic mechanisms underlying autonomous action potential generation in the somata and dendrites of GABAergic substantia nigra pars reticulata neurons in vitro. J Neurosci 25(36):8272–8281

    Article  CAS  PubMed  Google Scholar 

  • Aziz TZ, Peggs D, Sambrook MA (1991) Lesion of the subthalamic nucleus for the alleviation of 1-methyl- 4-phenyl-1, 2, 3, 6-tetrahydropiridine (MPTP)-induced parkinsonism in the primate. Mov Disord 6:288–292

    Article  CAS  PubMed  Google Scholar 

  • Baik JH, Picetti R, Saiardi A (1995) Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature 377(6548):424–428

    Article  CAS  PubMed  Google Scholar 

  • Baufreton J, Garret M, Rivera A (2003) D5 (not D1) dopamine receptors potentiate burst-firing in neurons of the subthalamic nucleus by modulating an L-type calcium conductance. J Neurosci 23(3):816–825

    CAS  PubMed  Google Scholar 

  • Baufreton J, Zhu ZT, Garret M (2005) Dopamine receptors set the pattern of activity generated in subthalamic neurons. FASEB J 19(13):1771–1777

    Article  CAS  PubMed  Google Scholar 

  • Baufreton J, Bevan MD (2008) D2-like dopamine receptor-mediated modulation of activity-dependent plasticity at GABAergic synapses in the subthalamic nucleus. J Physiol 586(8):2121–2142

    Article  CAS  PubMed  Google Scholar 

  • Benabid AL, Pollak P, Gross C (1994) Acute and long-term effects of subthalamic nucleus stimulation in Parkinson’s disease. Stereotact Funct Neurosurg 62:76–84

    Article  CAS  PubMed  Google Scholar 

  • Benazzouz A, Gross C, Fèger J (1993) Reversal of rigidity and improvement in motor performance by subthalamic highfrequency stimulation in MPTP-treated monkeys. Eur J Neurosci 5:382–389

    Article  CAS  PubMed  Google Scholar 

  • Bergman H, Wichmann T, Karmon B (1994) The primate subthalamic nucleus. Part II: Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 72:507–520

    CAS  PubMed  Google Scholar 

  • Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436–1438

    Article  CAS  PubMed  Google Scholar 

  • Bergman H, Feingold A, Nini A (1998) Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neurosci 21:32–38

    Article  CAS  PubMed  Google Scholar 

  • Bernardi G, Mercuri NB (2009) Dopamine: Cellular Actions. In Larry R. Squire (ed) Encyclopedia of Neuroscience, Academic Press, Oxford, pp 1–4

    Google Scholar 

  • Bezard E, Gross CE (1998) Compensatory mechanisms in experimental and human parkinsonism: towards a dynamic approach. Prog Neurobiol 55(2):93–116

    Article  CAS  PubMed  Google Scholar 

  • Bjorklund A, Lindvall O (1975) Dopamine in dendrites of substantia nigra neurons: suggestions for a role in dendritic terminals. Brain Res 83(3):531–537

    Article  CAS  PubMed  Google Scholar 

  • Blandini F, Porter RHP, Greenamyre JT (1995) Autoradiographic study of mitochondrial complex I and glutamate receptors in the basal ganglia of rats after unilateral subthalamic lesion. Neurosci Lett 186:99–102

    Article  CAS  PubMed  Google Scholar 

  • Blandini F, Nappi G, Tassorelli C (2000) Functional changes of the basal ganglia circuitry in Parkinson’s Disease. Prog Neurobiol 62:63–88

    Article  CAS  PubMed  Google Scholar 

  • Brown P, Oliviero A, Mazzone P (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 21:1033–1038

    CAS  PubMed  Google Scholar 

  • Bruce CJ, Goldberg ME (1985) Primate frontal eye fields. I. Single neurons discharging before saccades. J Neurophysiol 53(3):603–635

    CAS  PubMed  Google Scholar 

  • Bruce CJ, Goldberg ME, Bushnell MC (1985) Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J Neurophysiol 54(3):714–734

    CAS  PubMed  Google Scholar 

  • Calabresi P, Maj R, Pisani A (1992) Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J Neurosci 12(11):4224–4233

    CAS  PubMed  Google Scholar 

  • Calabresi P, Pisani A, Mercuri NB (1996) The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia. Trends Neurosci 19(1):19–24

    Article  CAS  PubMed  Google Scholar 

  • Calabresi P, Saiardi A, Pisani A (1997) Abnormal synaptic plasticity in the striatum of mice lacking dopamine D2 receptors. J Neurosci 17(12):4536–4544

    CAS  PubMed  Google Scholar 

  • Calabresi P, Gubellini P, Centonze D (2000) Dopamine and cAMP-regulated phosphoprotein 32 kDa controls both striatal long-term depression and long-term potentiation, opposing forms of synaptic plasticity. J Neurosci 20(22):8443–8451

    CAS  PubMed  Google Scholar 

  • Chevalier G, Deniau JM (1990) Disinhibition as basic process in the expression of striatal functions. Trends Neurosci 13:277–280

    Article  CAS  PubMed  Google Scholar 

  • Choi S, Lovinger DM (1997a) Decreased frequency but not amplitude of quantal synaptic responses associated with expression of corticostriatal long-term depression. J Neurosci 17(21):8613–8620

    CAS  PubMed  Google Scholar 

  • Choi S, Lovinger DM (1997b) Decreased probability of neurotransmitter release underlies striatal long-term depression and postnatal development of corticostriatal synapses. Proc Natl Acad Sci USA 94(6):2665–2670

    Article  CAS  PubMed  Google Scholar 

  • Cossette M, Levesque M, Parent A (1999) Extrastriatal dopaminergic innervation of human basal ganglia. Neurosci Res 34:51–54

    Article  CAS  PubMed  Google Scholar 

  • Delfs JM, Ciaramitaro VM, Parry TJ (1995) Subthalamic nucleus lesions: widespread effects on changes in gene expression induced by nigrostriatal dopamine depletion in rats. J Neurosci 15:6562–6575

    CAS  PubMed  Google Scholar 

  • DeLong MR, Wichmann T (2007) Circuits and circuit disorders of the basal ganglia. Arch Neurol 64(1):20–24

    Article  PubMed  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    Article  CAS  PubMed  Google Scholar 

  • Deniau JM, Hammond C, Riszk A (1978) Electrophysiological properties of identified output neurons of the rat substantia nigra (pars compacta and pars reticulata): evidences for the existence of branched neurons. Exp Brain Res 32(3):409–422

    Article  CAS  PubMed  Google Scholar 

  • Deniau JM, Menetrey A, Thierry AM (1994) Indirect nucleus accumbens input to the prefrontal cortex via the substantia nigra pars reticulata: a combined anatomical and electrophysiological study in the rat. Neuroscience 61:533–545

    Article  CAS  PubMed  Google Scholar 

  • Diana M, Tepper J (2002) Dopamine in the CNS II. In: Di Chiara G (ed) Handbook of Experimental Pharmacology. New York, Springer, pp 1–61

    Google Scholar 

  • Fiorillo CD, Williams JT (1998) Glutamate mediates an inhibitory postsynaptic potential in dopamine neurons. Nature 394(6688):78–82

    Article  CAS  PubMed  Google Scholar 

  • Flores-Hernandez J, Hernandez S, Snyder GL (2000) D(1) dopamine receptor activation reduces GABA(A) receptor currents in neostriatal neurons through a PKA/DARPP-32/PP1 signaling cascade. J Neurophysiol 83(5):2996–3004

    CAS  PubMed  Google Scholar 

  • Gauthier J, Parent M, Lévesque M (1999) The axonal arborization of single nigrostriatal neurons in rats. Brain Res 834(1–2):228–232

    Article  CAS  PubMed  Google Scholar 

  • Gerdeman GL, Ronesi J, Lovinger DM (2002) Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat Neurosci 5(5):446–451

    CAS  PubMed  Google Scholar 

  • Gerfen CR (1985) The neostriatal mosaic. I. Compartmental organization of projections from the striatum to the substantia nigra in the rat. J Comp Neurol 236(4):454–476

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250(4986):1429–1432

    Article  CAS  PubMed  Google Scholar 

  • Gernert M, Fedrowitz M, Wlaz P (2004) Subregional changes in discharge rate, pattern, and drug sensitivity of putative GABAergic nigral neurons in the kindling model of epilepsy. Eur J Neurosci 20(9):2377–2386

    Article  PubMed  Google Scholar 

  • Grace AA (1988) In vivo and in vitro intracellular recordings from rat midbrain dopamine neurons. Ann NY Acad Sci 537:51–76

    Article  CAS  PubMed  Google Scholar 

  • Grace AA, Onn SP (1989) Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro. J Neurosci 9(10):3463–3481

    CAS  PubMed  Google Scholar 

  • Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–254

    Article  CAS  PubMed  Google Scholar 

  • Grillner P, Mercuri NB (2002) Intrinsic membrane properties and synaptic inputs regulating the firing activity of the dopamine neurons. Behav Brain Res 130(1–2):149–169

    Article  CAS  PubMed  Google Scholar 

  • Guyenet PG, Aghajanian GK (1978) Antidromic identification of dopaminergic and other output neurons of the rat substantia nigra. Brain Res 150(1):69–84

    Article  CAS  PubMed  Google Scholar 

  • Hassani OK, Mouroux M, Feger J (1996) Increased subthalamic neuronal activity after nigral dopaminergic lesion independent of disinhibition via the globus pallidus. Neuroscience 72:105–115

    Article  CAS  PubMed  Google Scholar 

  • Hauber W (1998) Involvement of basal ganglia transmitter systems in movement initiation. Prog Neurobiol 56:507–540

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Lopez S, Tkatch T, Perez-Garci E (2000) D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLC[beta]1-IP3-calcineurin-signaling cascade. J Neurosci 20(24):8987–8995

    CAS  PubMed  Google Scholar 

  • Hikosaka O, Sakamoto M (1986) Cell activity in monkey caudate nucleus preceding saccadic eye movements. Exp Brain Res 63(3):659–662

    Article  CAS  PubMed  Google Scholar 

  • Hikosaka O, Sakamoto M, Usui S (1989) Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movements. J Neurophysiol 61:780–798

    CAS  PubMed  Google Scholar 

  • Hikosaka O, Takikawa Y, Kawagoe R (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80(3):953–978

    CAS  PubMed  Google Scholar 

  • Johnson SW, Seutin V, North RA (1992) Burst firing in dopamine neurons induced by N-methyl-D-aspartate: role of electrogenic sodium pump. Science 258(5082):665–667

    Article  CAS  PubMed  Google Scholar 

  • Ibáñez-Sandoval O, Carrillo-Reid L, Galarraga E (2007) Bursting in substantia nigra pars reticulata neurons in vitro: possible relevance for Parkinson disease. J Neurophysiol 98(4):2311–2323

    Article  PubMed  CAS  Google Scholar 

  • Kaneda K, Isa K, Yanagawa Y (2008) Nigral inhibition of GABAergic neurons in mouse superior colliculus. J Neurosci 28(43):11071–11078

    Article  CAS  PubMed  Google Scholar 

  • Kerr JN, Wickens JR (2001) Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. J Neurophysiol 85(1):117–124

    CAS  PubMed  Google Scholar 

  • Kincaid AE, Albin RL, Newman SW (1992) 6-Hydroxydopamine lesions of the nigrostriatal pathway alter the expression of glutamate decarboxylase messenger RNA in rat globus pallidus projection neurons. Neuroscience 51(3):705–718

    Article  CAS  PubMed  Google Scholar 

  • Kita H, Kitai ST (1987) Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the PHA-L method. J Comp Neurol 260:435–452

    Article  CAS  PubMed  Google Scholar 

  • Kliem MA, Maidment NT, Ackerson LC (2007) Activation of nigral and pallidal dopamine D1-like receptors modulates basal ganglia outflow in monkeys. J Neurophysiol 98(3):1489–1500

    Article  CAS  PubMed  Google Scholar 

  • Kreiss DS, Anderson LA, Walters JR (1996) Apomorphine and dopamine D1 receptor agonists increase the firing rate of subthalamic nucleus neurons. Neuroscience 72:863–876

    Article  CAS  PubMed  Google Scholar 

  • Kreiss DS, Mastropietro CW, Rawji SS (1997) The response of subthalamic nucleus neurons to dopamine receptor stimulation in a rodent model of Parkinson’s disease. J Neurosci 17:6807–6819

    CAS  PubMed  Google Scholar 

  • Lacey MG, Mercuri NB, North RA (1987) Dopamine acts on D2 receptors to increase potassium conductance in neurones of the rat substantia nigra zona compacta. J Physiol 392:397–416

    CAS  PubMed  Google Scholar 

  • Lacey MG, Mercuri NB, North RA (1989) Two cell types in rat substantia nigra zona compacta distinguished by membrane properties and the actions of dopamine and opioids. J Neurosci 9: 1233–1241

    Google Scholar 

  • Lee PH, Sooksawate T, Yanagawa Y (2007) Identity of a pathway for saccadic suppression. Proc Natl Acad Sci USA 104:6824–6827

    Article  CAS  PubMed  Google Scholar 

  • Lestienne F, Caillier P (1986) Role of the monkey substantia nigra pars reticulata in orienting behaviour and visually triggered arm movements. Neurosci Lett 64(1):109–115

    Article  CAS  PubMed  Google Scholar 

  • Lindvall O, Bjorklund A (1979) Dopaminergic innervation of the globus pallidus by collaterals from the nigrostriatal pathway. Brain Res 172:169–173

    Article  CAS  PubMed  Google Scholar 

  • Mallet N, Pogosyan A, Sharott A (2008) Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. J Neurosci 28(18): 4795–4806

    Article  CAS  PubMed  Google Scholar 

  • Marinelli S, Di Marzo V, Berretta N (2003) Presynaptic facilitation of glutamatergic synapses to dopaminergic neurons of the rat substantia nigra by endogenous stimulation of vanilloid receptors. J Neurosci 23(8):3136–3144

    CAS  PubMed  Google Scholar 

  • Marinelli S, Di Marzo V, Florenzano F (2007) N-arachidonoyl-dopamine tunes synaptic transmission onto dopaminergic neurons by activating both cannabinoid and vanilloid receptors. Neuropsychopharmacology 32(2):298–308

    Article  CAS  PubMed  Google Scholar 

  • Mendez JA, Bourque MJ, Dal Bo G (2008) Developmental and target-dependent regulation of vesicular glutamate transporter expression by dopamine neurons. J Neurosci 28(25):6309–6318

    Article  CAS  PubMed  Google Scholar 

  • Mercuri NB, Bonci A, Calabresi P (1994) Effects of dihydropyridine calcium antagonists on rat midbrain dopaminergic neurones. Br J Pharmacol 113(3):831–838

    CAS  PubMed  Google Scholar 

  • Mercuri NB, Bonci A, Calabresi P (1995) Properties of the hyperpolarization-activated cation current Ih in rat midbrain dopaminergic neurons. Eur J Neurosci 7(3):462–469

    Article  CAS  PubMed  Google Scholar 

  • Miller WC, DeLong MR (1988) Parkinsonian symptomatology. An anatomical and physiological analysis. Ann NY Acad Sci 515:287–302

    Article  CAS  PubMed  Google Scholar 

  • Mitchell IJ, Clarke CE, Boyce S (1989) Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyl-1, 2, 3, 6-tetrahydropyridine. Neuroscience 32:226–231

    Article  Google Scholar 

  • Naito A, Kita H (1994) The cortico-nigral projection in the rat: an anterograde tracing study with biotinylated dextran amine. Brain Res 637:317–322

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi H, Kita H, Kitai ST (1987) Intracellular study of rat substantia nigra pars reticulata neurons in an in vitro slice preparation: electrical membrane properties and response characteristics to subthalamic stimulation. Brain Res 437(1):45–55

    Article  CAS  PubMed  Google Scholar 

  • Oertel WH, Mugnaini E (1984) Immunocytochemical studies of GABAergic neurons in rat basal ganglia and their relations to other neuronal systems. Neurosci Lett 47:233–238

    Article  CAS  PubMed  Google Scholar 

  • Pan HS, Walters JR (1988) Unilateral lesion of the nigrostriatal pathway decreases the firing rate and alters the firing pattern of globus pallidus neurons in the rat. Synapse 2(6):650–656

    Article  CAS  PubMed  Google Scholar 

  • Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. Part I: The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20:91–127

    Article  CAS  PubMed  Google Scholar 

  • Parent A, Sato F, Wu Y (2000) Organization of the basal ganglia: the importance of axonal collateralization. Trends Neurosci 23(10 Suppl):S20–S27 Review

    Article  CAS  PubMed  Google Scholar 

  • Paz JT, Chavez M, Saillet S (2007) Activity of ventral medial thalamic neurons during absence seizures and modulation of cortical paroxysms by the nigrothalamic pathway. J Neurosci 27(4):929–941

    Article  CAS  PubMed  Google Scholar 

  • Picconi B, Centonze D, Håkansson K (2003) Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nat Neurosci 6(5):501–506

    CAS  PubMed  Google Scholar 

  • Ramanathan S, Tkatch T, Atherton JF (2008) D2-like dopamine receptors modulate SKCa channel function in subthalamic nucleus neurons through inhibition of Cav2.2 channels. J Neurophysiol 99(2):442–459

    Article  CAS  PubMed  Google Scholar 

  • Reese NB, Garcia-Rill E, Skinner RD (1995) The pedunculopontine nucleus. Auditory input, arousal and pathophisiology. Prog Neurobiol 42:105–133

    Article  Google Scholar 

  • Ribak CE, Vaughn JE, Roberts E (1980) GABAergic nerve terminals decrease in the substantia nigra following hemitransection of the striatonigral and pallidonigral pathways. Brain Res 192:413–420

    Article  CAS  PubMed  Google Scholar 

  • Richfield EK, Young AB, Penney JB (1987) Comparative distribution of dopamine D-1 and D-2 receptors in the basal ganglia of turtles, pigeons, rats, cats, and monkeys. J Comp Neurol 262:446–463

    Article  CAS  PubMed  Google Scholar 

  • Ronesi J, Gerdeman GL, Lovinger DM (2004) Disruption of endocannabinoid release and striatal long-term depression by postsynaptic blockade of endocannabinoid membrane transport. J Neurosci 24(7):1673–1679

    Article  CAS  PubMed  Google Scholar 

  • Saitoh K, Hattori S, Song WJ (2003) Nigral GABAergic inhibition upon cholinergic neurons in the rat pedunculopontine tegmental nucleus. Eur J Neurosci 18(4):879–886

    Article  PubMed  Google Scholar 

  • Seutin V, Mkahli F, Massotte L (2000) Calcium release from internal stores is required for the generation of spontaneous hyperpolarizations in dopaminergic neurons of neonatal rats. J Neurophysiol 83(1):192–197

    CAS  PubMed  Google Scholar 

  • Shen KZ, Johnson SW (2006) Subthalamic stimulation evokes complex EPSCs in the rat substantia nigra pars reticulata in vitro. J Physiol (Lond) 573:697–709

    Article  CAS  Google Scholar 

  • Shepard PD, Bunney BS (1991) Repetitive firing properties of putative dopamine-containing neurons in vitro: regulation by an apamin-sensitive Ca(2+)-activated K+ conductance. Exp Brain Res 86(1):141–150

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Bolam JP (1989) Neurons of the substantia nigra reticulata receive a dense GABA-containing input from the globus pallidus in the rat. Brain Res 493:160–167

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Charara A, Parent A (1996) Synaptic innervation of midbrain dopaminergic neurons by glutamate-enriched terminals in the squirrel monkey. J Comp Neurol 364:231–253

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Bevan MD, Shink E (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86:353–387

    Article  CAS  PubMed  Google Scholar 

  • Soghomonian JJ, Chesselet MF (1992) Effects of nigrostriatal lesions on the levels of messenger RNAs encoding two isoforms of glutamate decarboxylase in the globus pallidus and entopeduncular nucleus of the rat. Synapse 11(2):124–133

    Article  CAS  PubMed  Google Scholar 

  • Sommer MA, Wurtz RH (2000) Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. J Neurophysiol 83(4):1979–2001

    CAS  PubMed  Google Scholar 

  • Sommer MA, Wurtz RH (1998) Frontal eye field neurons orthodromically activated from the superior colliculus. J Neurophysiol 80(6):3331–3335

    CAS  PubMed  Google Scholar 

  • Sparks DL (1986) Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus. Physiol Rev 66(1):118–171

    CAS  PubMed  Google Scholar 

  • Takakusaki K, Saitoh K, Harada H (2004) Evidence for a role of basal ganglia in the regulation of rapid eye movement sleep by electrical and chemical stimulation for the pedunculopontine tegmental nucleus and the substantia nigra pars reticulata in decerebrate cats. Neuroscience 124(1):207–220

    Article  CAS  PubMed  Google Scholar 

  • Tepper JM, Lee CR (2007) GABAergic control of substantia nigra dopaminergic neurons. Prog Brain Res 160:189–208

    Article  CAS  PubMed  Google Scholar 

  • Tepper JM, Martin LP, Anderson DR (1995) GABAA receptor-mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons. J Neurosci 15: 3092–3103

    CAS  PubMed  Google Scholar 

  • Timmerman W, Westerink BH (1997) Electrical stimulation of the substantia nigra reticulata: detection of neuronal extracellular GABA in the ventromedial thalamus and its regulatory mechanism using microdialysis in awake rats. Synapse 26(1):62–71

    Article  CAS  PubMed  Google Scholar 

  • Ueki A, Uno M, Anderson M (1977) Monosynaptic inhibition of thalamic neurons produced by stimulation of the substantia nigra. Experientia 33(11):1480–1482

    Article  CAS  PubMed  Google Scholar 

  • Vila M, Levy R, Herrero MT (1996) Metabolic activity of the basal ganglia in parkinsonian syndromes in human and non-human primates: a cytochrome oxidase histochemistry study. Neuroscience 71:903–912

    Article  CAS  PubMed  Google Scholar 

  • Vila M, Marin C, Ruberg M (1999) Systemic administration of NMDA and AMPA receptor antagonists reverses the neuro-chemical changes induced by nigrostriatal denervation in basal ganglia. J Neurochem 73:344–352

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Kai L, Day M (2006) Dopaminergic control of corticostriatal long-term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons. Neuron 50(3):443–452

    Article  CAS  PubMed  Google Scholar 

  • Williams D, Tijssen M, Van Bruggen G (2002) Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain 125:1558–1569

    Article  PubMed  Google Scholar 

  • Wilson CJ, Young SJ, Groves PM (1977) Statistical properties of neuronal spike trains in the substantia nigra: cell types and their interactions. Brain Res 136(2):243–260

    Article  CAS  PubMed  Google Scholar 

  • Wilson CJ, Callaway JC (2000) Coupled oscillator model of the dopaminergic neuron of the substantia nigra. J Neurophysiol 83(5):3084–3100

    CAS  PubMed  Google Scholar 

  • Yamaguchi T, Sheen W, Morales M (2007) Glutamatergic neurons are present in the rat ventral tegmental area. Eur J Neurosci 25:106–118

    Article  PubMed  Google Scholar 

  • Yung KK, Smith AD, Levey AI (1996) Synaptic connections between spiny neurons of the direct and indirect pathways in the neostriatum of the rat: evidence from dopamine receptor and neuropeptide immunostaining. Eur J Neurosci 8:861–869

    Article  CAS  PubMed  Google Scholar 

  • Zhou FW, Matta SG, Zhou FM (2008) Constitutively Active TRPC3 Channels Regulate Basal Ganglia Output Neurons. J Neurosci 28(2):473–482

    Article  PubMed  CAS  Google Scholar 

  • Zhu Z, Bartol M, Shen K (2002) Excitatory effects of dopamine on subthalamic nucleus neurons: in vitro study of rats pretreated with 6-hydroxydopamine and levodopa. Brain Res 945(1):31–40

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to Peter S. Freestone, Ph.D. for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola B. Mercuri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag/Wien Printed in Germany

About this chapter

Cite this chapter

Guatteo, E., Cucchiaroni, M.L., Mercuri, N.B. (2009). Substantia Nigra Control of Basal Ganglia Nuclei. In: Giovanni, G., Di Matteo, V., Esposito, E. (eds) Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra. Journal of Neural Transmission. Supplementa, vol 73. Springer, Vienna. https://doi.org/10.1007/978-3-211-92660-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-92660-4_7

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-92659-8

  • Online ISBN: 978-3-211-92660-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics