Advertisement

Non‐motor Function of the Midbrain Dopaminergic Neurons

  • Claudio Da CunhaEmail author
  • Evellyn Claudia Wietzikoski
  • Mariza Bortolanza
  • Patricia Andréia Dombrowski
  • Lucélia Mendes dos Santos
  • Suelen Lúcio Boschen
  • Edmar Miyoshi
  • Maria Aparecida Barbato Frazão Vital
  • Roseli Boerngen-Lacerda
  • Roberto Andreatini
Chapter
Part of the Journal of Neural Transmission. Supplementa book series (NEURALTRANS, volume 73)

Abstract

The roles of the nigrostriatal pathway are far beyond the simple control of motor functions. The tonic release of dopamine in the dorsal and ventral striatum controls the choice of proper actions toward a given environmental situation. In the striatum, a specific action is triggered by a specific stimulus associated with it. When the subject faces a novel and salient stimulus, the phasic release of dopamine allows synaptic plasticity in the cortico-striatal synapses. Neurons of different regions of cortical areas make synapses that converge to the same medium spine neurons of the striatum. The convergent associations form functional units encoding body parts, objects, locations, and symbolic representations of the subject’s world. Such units emerge in the striatum in a repetitive manner, like a mosaic of broken mirrors. The phasic release of dopamine allows the association of units to encode an action of the subject directed to an object or location with the outcome of this action. Reinforced stimulus-action-outcome associations will affect future decision making when the same stimulus (object, location, idea) is presented to the subject in the future. In the absence of a minimal amount of striatal dopamine, no action is initiated as seen in Parkinson’s disease subjects. The abnormal and improper association of these units leads to the initiation of unpurposeful and sometimes repetitive actions, as those observed in dyskinetic patients. The association of an excessive reinforcement of some actions, like drug consumption, leads to drug addiction. Improper associations of ideas and unpleasant outcomes may be related to traumatic and depressive symptoms common in many diseases, including Parkinson’s disease. The same can be said about the learning and memory impairments observed in demented and nondemented Parkinson’s disease patients.

Keywords

Addiction Basal ganglia Dopamine Depression Learning Memory Parkinson’s disease 

Abbreviations

CREB

Cyclic-AMPc response-element-binding protein

CRF

Corticotrophin-releasing factor

DSM IV

Diagnostic and statistical manual of mental disorders

GABA

Gamma amino butyric acid

GPi

Globus pallidus

HD

Huntington’s disease

LTP

Long-term potentiation

NAc

Nucleus accumbens

PD

Parkinson’s disease

PET

Positron emission tomography

SNc

Substantia nigra pars compacta

SNr

Substantia nigra pars reticulata

TH

Tyrosine hydroxylase

THC

Tetrahydrocannabinol

VTA

Ventral tegmental area

Notes

Acknowledgments

We are grateful to Ms Suzana Meinhardt for the English revision of the manuscript. DaC, RA, MABFV are recipient of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)/ Brazil fellowships. This work was supported by grants of Institutos do Milenio (CNPq/MCT), Pronex Paraná, Fundação Araucária, and FAPESP.

References

  1. Aarsland D, Tandberg E, Larsen JP, Cummings JL (1996) Frequency of dementia in Parkinson disease. Arch Neurol 53:538–542Google Scholar
  2. Ahmed SH, Kenny PJ, Koob GF, Markou A (2002) Neurobiological evidence for hedonic allostasis associated with escalating cocaine use. Nat Neurosci 5:625–626PubMedGoogle Scholar
  3. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381PubMedCrossRefGoogle Scholar
  4. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington, DCGoogle Scholar
  5. Anthony JC, Warner LA, Kessler RC (1994) Comparative epidemiology of dependence on tobacco, ethanol, controlled substances, and inhalants: basic findings from the National Comorbidity Survey. Exp Clin Psychopharmacol 2:244–268CrossRefGoogle Scholar
  6. Balleine BW, Delgado MR, Hikosaka O (2007) The role of the dorsal striatum in reward and decision-making. J Neurosci 31:8161–8165CrossRefGoogle Scholar
  7. Barone P, Scarzella L, Marconi R, Antonini A, Morgante L, Bracco F, Zappia M, Musch B; Depression/Parkinson Italian Study Group (2006) Pramipexole versus sertraline in the treatment of depression in PD: a national multicenter parallel-group randomized study. J Neurol 5:601–607Google Scholar
  8. Bayer H, Glimcher P (2005) Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47:129–141PubMedCrossRefGoogle Scholar
  9. Bejjani BP, Damier P, Arnulf I, Thivard L, Bonnet AM, Dormont D, Cornu P, Pidoux B, Samson Y, Agid Y (1999) Transient acute depression induced by high-frequency deep-brain stimulation. N Engl J Med 19:1476–1480CrossRefGoogle Scholar
  10. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455PubMedCrossRefGoogle Scholar
  11. Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology (Berl) 191: 391–431CrossRefGoogle Scholar
  12. Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev 28:309–369PubMedCrossRefGoogle Scholar
  13. Blomstedt P, Hariz MI, Lees A, Silberstein P, Limousin P, Yelnik J, Agid Y (2008) Acute severe depression induced by intraoperative stimulation of the substantia nigra: a case report. Parkinsonism Relat Disord 3:253– 6CrossRefGoogle Scholar
  14. Bondi MW, Kaszniak AW (1991) Implicit and explicit memory in Alzheimer’s disease and Parkinson’s disease. J Clin Exp Neuropsychol 13:339–358PubMedCrossRefGoogle Scholar
  15. Bosboom JL, Stoffers D, Wolters ECh (2004) Cognitive dysfunction and dementia in Parkinson’s disease. J Neural Transm 111:1303–1315PubMedCrossRefGoogle Scholar
  16. Bowman EM, Aigner TG, Richmond BJ (1996) Neural signals in the monkey ventral striatum related to motivation for juice and cocaine rewards. J Neurophysiol 75:1061–1073PubMedGoogle Scholar
  17. Bradley V, Welch JL, Dick JD (1989) Visuospatial working memory in Parkinson’s disease. J Neurol Neurosurg Psychiatry 52:1228–1235PubMedCrossRefGoogle Scholar
  18. Brown RG, Marsden CD (1984) How common is dementia in Parkinson’s disease? Lancet 2:1262–1265PubMedCrossRefGoogle Scholar
  19. Burges PW, Alderman N (2004) Executive dysfunction. In: Goldstein L, McNeil J (eds) org. Clinical neuropsychology: a practical guide to assessment and management for clinicians. Wiley, England, pp 185–270Google Scholar
  20. Calabresi P, Picconi B, Tozzi A, Filippo M (2007) Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 30:211–219PubMedCrossRefGoogle Scholar
  21. Calzavara R, Mailly P, Haber SN (2007) Relationship between the corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal and rostral premotor cortex and area 24c: an anatomical substrate for cognition to action. Eur J Neurosci 26:2005–2024PubMedCrossRefGoogle Scholar
  22. Cantello R, Aguggia M, Gilli M, Delsedime M, Chiardò Cutin I, Riccio A, Mutani R (1989) Major depression in PD and the mood response to intravenous methylphenidate: possible role of the “hedonic” dopamine synapse. J Neurol Neurosurg Psychiatry 6:724–731CrossRefGoogle Scholar
  23. Capriles N, Rodaros D, Sorge RE, Stewart J (2003) A role for the prefrontal cortex in stress- and cocaine-induced reinstatement of cocaine seeking in rats. Psychopharmacol 168:66–74CrossRefGoogle Scholar
  24. Chang C, Crottaz-Herbette S, Menon V (2007) Temporal dynamics of basal ganglia response and connectivity during verbal working memory. Neuroimage 34:1253–1269PubMedCrossRefGoogle Scholar
  25. Cheatwood JL, Corwin JV, Reep RL (2005) Overlap and interdigitation of cortical and thalamic afferents to dorsocentral striatum in the rat. Brain Res 1036:90–100PubMedCrossRefGoogle Scholar
  26. Chen JP, Paredes W, Lowinson JH, Gardner EL (1991) Strain-specific facilitation of dopamine efflux by delta-9-tetrahydrocannabinol in the nucleus accumbens of rat: an in vivo microdialysis study. Neurosci Lett 129:136–180PubMedCrossRefGoogle Scholar
  27. Cornish J, Kalivas P (2000) Glutamate transmission in the nucleus accumbens mediates relapse in cocaine addiction. J Neurosci 20:RC89PubMedGoogle Scholar
  28. Corrigal WA, Franklin KBJ, Coen KM, Clarke PBS (1992) The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacol 107:285–289CrossRefGoogle Scholar
  29. Da Cunha C, Wietzikoski S, Wietzikoski EC, Miyoshi E, Ferro MM, Anselmo-Franci JA, Canteras NS (2003) Evidence for the substantia nigra pars compacta as an essential component of a memory system independent of the hippocampal memory system. Neurobiol Learn Mem 3:236–242CrossRefGoogle Scholar
  30. Da Cunha C, Wietzikoski EC, Dombrowski PA, Bortolanza M, Santos LM, Boschen SL, Miyoshi E (2009) Learning processing in the basal ganglia: A mosaic of broken mirrors. Behav Brain Res 199:157–170PubMedCrossRefGoogle Scholar
  31. Deroche-Gamonet V, Belin D, Piazza PV (2004) Evidence for addiction-like behavior in the rat. Science 305:1014–1017PubMedCrossRefGoogle Scholar
  32. Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278PubMedCrossRefGoogle Scholar
  33. Di Ciano P, Cardinal RN, Cowell RA, Little SJ, Everitt BJ (2001) Differential involvement of NMDA, AMPA/kainate, and dopamine receptors in the nucleus accumbens core in the acquisition and performance of Pavlovian approach behavior. J Neurosci 21:9471–9477PubMedGoogle Scholar
  34. Di Filippo M, Picconi B, Barone I, Ghiglieri V, Bagetta V, Sgobio C, Tozzi A, Calabresi P (2009) Striatal synaptic plasticity: underlying mechanisms and implications for reward-related learning. Behav Brain Res 199:108–118PubMedCrossRefGoogle Scholar
  35. Diana M, Pistis M, Carboni S, Gessa GL, Rossetti ZL (1993) Profound decrement of mesolimbic dopaminergic neuronal activity during ethanol withdrawal syndrome in rats: electrophysiological and biochemical evidence. Proc Natl Acad Sci USA 90:7966–7969PubMedCrossRefGoogle Scholar
  36. Dubois B, Pillon B (1997) Cognitive deficits in Parkinson’s disease. J Neurol 244:2–8PubMedCrossRefGoogle Scholar
  37. Dujardin K, Laurent B (2003) Dysfunction of the human memory systems: role of the dopaminergic transmission. Curr Opin Neurol 16:S11–S16PubMedCrossRefGoogle Scholar
  38. Dunlop BW, Nemeroff CB (2007) The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 64:327–337PubMedCrossRefGoogle Scholar
  39. Faglioni P, Scarpa M, Botti C, Ferrari V (1995) Parkinson’s disease affects automatic and spares intentional verbal learning. A stochastic approach to explicit learning processes. Cortex 31:597–617PubMedGoogle Scholar
  40. Faglioni P, Bottib C, Scarpaa M, Ferraria V, Saettia MC (1997) Learning and forgetting processes in Parkinson’s disease: A model-based approach to disentangling storage, retention and retrieval contributions. Neuropsychol 35:767–779CrossRefGoogle Scholar
  41. Fahn S, Przedborski S (2000) Parkinsonism. In: Rowland LP (ed) Merritt’s neurology. Williams and Wilkins, Lippincott, NY, pp 679–693Google Scholar
  42. Flaherty AW, Graybiel AM (1991) Corticostriatal transformations in the primate somatosensory system - projections from physiologically mapped body-part representations. J Neurophysiol 66:1249–63PubMedGoogle Scholar
  43. Frank MJ (2005) Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J Cogn Neurosci 17:51–72PubMedCrossRefGoogle Scholar
  44. Frisina PG, Haroutunian V, Libow LS (2009) The neuropathological basis for depression in PD Parkinsonism. Relat Disord 15:144–148CrossRefGoogle Scholar
  45. Girotti F, Carella F, Grassi MP, Soliveri P, Marano R, Caraceni T (1986) Motor and cognitive performances of parkinsonian patients in the on and off phases of the disease. J Neurol Neurosurg Psychiatry 49:657–660PubMedCrossRefGoogle Scholar
  46. Goetz CG, Tanner CM, Klawans HL (1984) Bupropion in PD. Neurology 8:1092–1094Google Scholar
  47. Goldman WP, Baty JD, Buckles VD, Sahrmann S, Morris JC (1998) Cognitive and motor functioning in Parkinson disease — subjects with and without questionable dementia. Arch Neurol 55:674–680PubMedCrossRefGoogle Scholar
  48. Goto Y, Otani S, Grace AA (2007) The Yin and Yang of dopamine release: a new perspective. Neurophramacology 53:583–587CrossRefGoogle Scholar
  49. Grahn JA, Parkinson JA, Owen AM (2009) The role of the basal ganglia in learning and memory: neuropsychological studies. Behav Brain Res 199:53–60PubMedCrossRefGoogle Scholar
  50. Graziano MSA, Gross CG (1993) A bimodal map of space: somatosensory receptive fields in the macaque putamen with corresponding visual receptive fields. Exp Brain Res 97:96–109PubMedCrossRefGoogle Scholar
  51. Grillner S, Helligren J, Menard A, Saitoh K, Wikstrom MA (2005) Mechanisms for selection of basic motor programs – roles for the striatum and pallidum. Trends Neurosci 28:364–70PubMedCrossRefGoogle Scholar
  52. Grossman M, Cooke A, DeVita C, Lee C, Alsop D, Detre J (2003) Grammatical and resource components of sentence processing in Parkinson’s disease: an fMRI study. Neurology 60:775–81PubMedCrossRefGoogle Scholar
  53. Guitart X, Thompson MA, Mirante CK, Greenberg ME, Nestler EJ (1992) Regulation of CREB phosphorylation by acute and chronic morphine in the rat locus coeruleus. J Neurochem 5:1168–1171CrossRefGoogle Scholar
  54. Hikosaka O (2007) GABAergic output of the basal ganglia. Prog Brain Res 160:209–226PubMedCrossRefGoogle Scholar
  55. Hooss CA, Margolis RL (2002) Huntington disease. In: Davis KL, Charney D, Coyle JT, Nemeroff C (eds) Neuropsychopharmacology: the fifth generation of progress. Williams and Wilkins, Lippincott, NY, pp 1817–1830Google Scholar
  56. Hyman SE (1996) Addiction to cocaine and amphetamine. Neuron 16:901–904PubMedCrossRefGoogle Scholar
  57. Hyman SE (2005) Addiction: a disease of learning and memory. Am J Psych 162:1414–1422CrossRefGoogle Scholar
  58. Hyman SE, Malenka RC (2001) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci 2: 695–703PubMedCrossRefGoogle Scholar
  59. Kauer JA (2004) Learning mechanisms in addiction: synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annu Rev Physiol 66:447–475PubMedCrossRefGoogle Scholar
  60. Knowlton BJ, Mangels JA, Squire LR (1996) A neostriatal habit learning system in humans. Science 273:1399–1402PubMedCrossRefGoogle Scholar
  61. Koenig O, Thomas-Anterion C, Laurent B (1999) Procedural learning in Parkinson’s disease: intact and impaired cognitive components. Neuropsychologia 37:1103–1109PubMedCrossRefGoogle Scholar
  62. Koepp MJ, Gunn RN, Lawrence AD, Cunningham VJ, Dagher A, Jones T, Brooks DJ, Bench CJ, Grasby PM (1998) Evidence for striatal dopamine release during a video game. Nature 393:266–268PubMedCrossRefGoogle Scholar
  63. Koob GF (2003) Alcoholism: allostasis and beyond. Alcohol Clin Exp Res 27:232–243PubMedCrossRefGoogle Scholar
  64. Koob GF, Bloom FE (1988) Cellular and molecular mechanisms of drug dependence. Science 242:715–723PubMedCrossRefGoogle Scholar
  65. Koob GF, Nestler EJ (1997) Neurobiology of addiction. J Neuropsychiat Clin Neurosci 9:482–497Google Scholar
  66. Koob GF, Sanna PP, Bloom FE (1998) Neuroscience of addiction. Neuron 21:467–476PubMedCrossRefGoogle Scholar
  67. Koob GF, Le Moal M (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacol 24:97–129CrossRefGoogle Scholar
  68. Koob GF, Le Moal M (2005) Plasticity of reward neurocircuitry and the « dark side » of drug addiction. Nat Neurosci 8:1442–1444PubMedCrossRefGoogle Scholar
  69. Kreek MJ (1997) Opiate and cocaine addictions: challenge for pharmacotherapies. Pharmacol Biochem Behav 57:551–569PubMedCrossRefGoogle Scholar
  70. Lau B, Glimcher PW (2007) Action and outcome encoding in the primate caudate nucleus. J Neurosci 52:14502–14514CrossRefGoogle Scholar
  71. Lawrence AJ, Beart PM, Kalivas PW (2008) Neuropharmacology of addiction-setting the scene. Br J Pharmacol 154:259–260PubMedCrossRefGoogle Scholar
  72. Le Moal M, Koob GF (2007) Drug addiction: pathways to the disease and pathophysiological perspectives. Eur Neuropsychopharmacol 17:377–393PubMedCrossRefGoogle Scholar
  73. Leshner AI (1997) Addiction is a brain disease, and it matters. Science 5335:45–47CrossRefGoogle Scholar
  74. Lu L, Grimm JW, Shaham Y, Hope BT (2003) Molecular adaptations in the accumbens and ventral tegmental area during the first 90 days of forced abstinence from cocaine self-administration in rats. J Neurochem 85:1604–1613PubMedCrossRefGoogle Scholar
  75. Maricle RA, Valentine RJ, Carter J, Nutt JG (1998) Mood response to levodopa infusion in early PD. Neurology 6:1890–1892Google Scholar
  76. Marie RM, Barre L, Dupuy B, Viader F, Defer G, Baron JC (1999) Relationships between striatal dopamine denervation and frontal executive tests in Parkinson’s disease. Neurosci Lett 260:77–80PubMedCrossRefGoogle Scholar
  77. Marie RM, Defer G (2003) Working memory and dopamine: clinical and experimental clues. Curr Opin Neurol 16:S29–S35PubMedCrossRefGoogle Scholar
  78. Marsden CA (2006) Dopamine: the regarding yers. Br J Pharmacol 147:S135–S144CrossRefGoogle Scholar
  79. Mayeux R (1990) The “serotonin hypothesis” for depression in PD. Adv Neurol 53:163–166PubMedGoogle Scholar
  80. McFarland K, Kalivas PW (2001) The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 21:8655–8663Google Scholar
  81. McFarland K, Lapish CC, Kalivas PW (2003) Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 23:3531–3537Google Scholar
  82. McFarland K, Davidge SB, Lapish CC, Kalivas PW (2004) Limbic and motor circuitry underlying footshock-induced reinstatement of cocaine-seeking behavior. J Neurosci 24:1551–1560CrossRefGoogle Scholar
  83. McKeith I, Burn D (2000) Spectrum of Parkinson’s disease, Parkinson’s dementia, and Lewy body dementia. Neurol Clin 18:865–83PubMedCrossRefGoogle Scholar
  84. Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50:381–425PubMedCrossRefGoogle Scholar
  85. Mizumori SJY, Yeshenko O, Gill KM, Davis DM (2004) Parallel processing across neural systems: Implications for a multiple memory system hypothesis. Neurobiol Learn Mem 82:278–298PubMedCrossRefGoogle Scholar
  86. Mizumori SJ, Puryear CB, Martig AK (2009) Basal ganglia contributions to adaptive navigation. Behav Brain Res 199:32–42PubMedCrossRefGoogle Scholar
  87. Montoya A, Price BH, Menear M, Lepage M (2006) Brain imaging and cognitive dysfunctions in Huntington’s disease. J Psychiatry Neurosci 31:21–29PubMedGoogle Scholar
  88. Moreaud O, Fournet N, Roulin JL, Naegele B, Pellat J (1997) The phonological loop in medicated patients with Parkinson’s disease: presence of phonological similarity and word length effects. J Neurol Neurosurg Psychiatry 62:609–611PubMedCrossRefGoogle Scholar
  89. Negus SS, Henriksen SJ, Mattox A, Pasternak GW, Portoghese PS, Takemori AE, Weinger MB, Koob GF (1993) Effect of antagonists selective for mu, delta and k opioid receptors on the reinforcing effects of heroin in rats. J Pharmacol Exp Ther 265:1245–1252PubMedGoogle Scholar
  90. Nestler EJ (1992) Molecular mechanisms of drug addiction. J Neurosci 12:2439–2450PubMedGoogle Scholar
  91. Nestler EJ (2001) Molecular basis of long-term plasticity underling addiction. Nat Rev Neurosci 2:119–128PubMedCrossRefGoogle Scholar
  92. Nestler EJ (2005) Is there a common molecular pathway for addiction? Nat Neurosci 8:1445–1449PubMedCrossRefGoogle Scholar
  93. Nicola SM (2007) The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacol 191:521–550CrossRefGoogle Scholar
  94. O’Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ (2004) Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304:452–454PubMedCrossRefGoogle Scholar
  95. Olson VG, Zabetian CP, Bolanos CA, Edwards S, Barrot M, Eisch AJ, Hughes T, Self DW, Neve RL, Nestler EJ (2005) Regulation of drug reward by CREB: evidence for two functionally distinct subregions of the ventral tegmental area. J Neurosci 25: 5553–5562PubMedCrossRefGoogle Scholar
  96. Owen AM (2004) Cognitive dysfunction in Parkinson’s disease: the role of frontostriatal circuitry. Neuroscientist 10:525–537PubMedCrossRefGoogle Scholar
  97. Owen AM, Beksinska M, James M, Leigh PN, Summers BA, Marsden CD, Quinn NP, Sahakian BJ, Robbins TW (1993) Visuospatial memory deficits at different stages of Parkinson’s disease. Neuropsychol 31:627–644CrossRefGoogle Scholar
  98. Owen AM, Iddon JL, Hodges JR, Summers BA, Robbins TW (1997) Spatial and non-spatial working memory at different stages of Parkinson’s disease. Neuropsychol 35:519–532CrossRefGoogle Scholar
  99. Parsons LH, Koob GF, Weiss F (1995) Serotonin dysfunction in the nucleus accumbens of rats during withdrawal after unlimited access to intravenous cocaine. J Pharmacol Exp Thera 274:1182–1191Google Scholar
  100. Pascual-Leone A, Grafman J, Clark K, Stewart M, Massaquoi S, Lou J-S, Hallett M (1993) Procedural learning in Parkinson’s disease and cerebellar degeneration. Ann Neurol 34:594–602PubMedCrossRefGoogle Scholar
  101. Petrovich GD, Holland PC, Gallagher M (2005) Amygdalar and prefrontal pathways to the lateral hypothalamus are activated by a learned cue that stimulates eating. J Neurosci 25:8295–8302PubMedCrossRefGoogle Scholar
  102. Pillon B, Ertle S, Deweere B, Sarazin M, Agid Y, Dubois B (1996) Memory for spatial location is affected in Parkinson’s disease. Neuropsychol 34:77–84CrossRefGoogle Scholar
  103. Pillon B, Ertle S, Deweer B, Bonnet AM, Vidailhet M, Dubois B (1997) Memory for spatial location in ‘de novo’ parkinsonian patients. Neuropsychol 35:221–228CrossRefGoogle Scholar
  104. Pioli EY, Meissner W, Sohr R, Gross CE, Bezard E, Bioulac BH (2008) Differential behavioral effects of partial bilateral lesions of ventral tegmental area or substantia nigra pars compacta in rats. Neurosci 4:1213–1224CrossRefGoogle Scholar
  105. Redgrave P, Prescott T, Gurney KN (1999) The basal ganglia: a vertebrate solution to the selection problem. Neurosci 89:1009–23CrossRefGoogle Scholar
  106. Redgrave P, Gurney K, Reynolds J (2008) What is reinforced by phasic dopamine signals? Brain Res Rev 58:322–339PubMedCrossRefGoogle Scholar
  107. Rogers RD, Sahakian BJ, Hodges JR, Polkey CE, Kennard C, Robbins TW (1998) Dissociating executive mechanisms of task control following frontal lobe damage and Parkinson’s disease. Brain 121(Pt 5):815–42PubMedCrossRefGoogle Scholar
  108. Roncacci S, Troisi E, Carlesimo GA, Nocentini U, Caltagirone C (1996) Implicit memory in parkinsonian patients: evidence for defi cient skill learning. Eur Neurol 36:154–9PubMedCrossRefGoogle Scholar
  109. Rowe J, Stephan KE, Friston K, Frackowiak R, Lees A, Passingham R (2002) Attention to action in Parkinson’s disease: impaired effective connectivity among frontal cortical regions. Brain 125: 276–289PubMedCrossRefGoogle Scholar
  110. Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27PubMedGoogle Scholar
  111. Schultz W (2007) Behavioral dopamine signals. Trends Neurosci 5:203–210CrossRefGoogle Scholar
  112. Schultz W, Apicella P, Scarnati E, Ljungberg T (1992) Neuronal activity in monkey ventral striatum related to the expectation of reward. J Neurosci 12:4595–4610PubMedGoogle Scholar
  113. See RE, Kruzich PJ, Grimm JW (2001) Dopamine, but not glutamate, receptor blockade in the basolateral amygdala attenuates conditioned reward in a rat model of relapse to cocaine-seeking behavior. Psychopharmacol 154:301–310CrossRefGoogle Scholar
  114. Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 1985(5):776–794Google Scholar
  115. Shaw-Lutchman TZ, Barrot M, Wallace T, Gilden L, Zachariou V, Impey S, Duman RS, Storm D, Nestler EJ (2002) Regional and cellular mapping of cAMP response element-mediated transcription during naltrexone-precipitated morphine withdrawal. J Neurosci 9:3663–72Google Scholar
  116. Shippenberg TS, Rea W (1997) Sensitization to the behavioral effects of cocaine: modulation by dynorphin and kappaopioid receptor agonists. Pharmacol Biochem Behav 57:449–455PubMedCrossRefGoogle Scholar
  117. Slabosz A, Lewis SJ, Smigasiewicz K, Szymura B, Barker RA, Owen AM (2006) The role of learned irrelevance in attentional set-shifting impairments in Parkinson’s disease. Neuropsychol 20:578–588CrossRefGoogle Scholar
  118. Stebbins GT, Gabrieli JDE, Masciari F, Monti L, Goetz CG (1999) Delayed recognition memory in Parkinson’s disease: a role for working memory? Neuropsychologia 37:503–510PubMedCrossRefGoogle Scholar
  119. Tadaiesky MT, Dombrowski PA, Figueiredo CP, Ferreira EC, Da Cunha C, Takahashi RN (2008) Emotional, cognitive and neurochemical alterations in a premotor stage model of Parkinson’s disease. Neurosci 156:830–840CrossRefGoogle Scholar
  120. Tamaru F (1997) Disturbances in higher function in Parkinson’s disease. Eur Neurol 38:33–6PubMedCrossRefGoogle Scholar
  121. Tanda G, Pontieri FE, Di Chiara G (1997) Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism. Science 276:2048–2050PubMedCrossRefGoogle Scholar
  122. Thomas V, Reymann JM, Lieury A, Allain H (1996) Assessment of procedural memory in Parkinson’s disease. Prog NeuroPsychopharmacol Biol Psychiatry 20:641–660PubMedCrossRefGoogle Scholar
  123. Tindell AJ, Berridge KC, Zhang J, Peciña S, Aldridge JW (2005) Ventral pallidal neurons code incentive motivation: amplification by mesolimbic sensitization and amphetamine. Eur J Neurosci 22:2617–2634PubMedCrossRefGoogle Scholar
  124. Tricomi EM, Delgado MR, Fiez JA (2004) Modulation of caudate activity by action contingency. Neuron 41:281–292PubMedCrossRefGoogle Scholar
  125. Tröster AI, Woods SP (2003) Neuropsychological aspects of Parkinson’s disease and parkinsonian syndromes. In: Pahwa R, Lyons KE, Koller WC (eds) Handbook of Parkinson’s disease. Dekker, New York, pp 127–57Google Scholar
  126. Turgeon SM, Pollack AE, Fink JS (1997) Enhanced CREB phosphorylation and changes in c-Fos and FRA expression in striatum accompany amphetamine sensitization. Brain Res 749:120–126PubMedCrossRefGoogle Scholar
  127. Valdez GR, Roberts AJ, Chan K, Davis H, Brennan M, Zorrilla EP, Koob GF (2002) Increased ethanol self-administration and anxiety-like behavior during acute ethanol withdrawal and protracted abstinence: regulation by corticotropin-releasing factor. Alcohol Clin Exp Res 26:1494–1501PubMedGoogle Scholar
  128. Volkow ND, Wang GJ, Fowler JS, Logan J, Jayne M, Franceschi D, Wong C, Gatley SJ, Gifford AN, Ding YS, Pappas N (2002) “Nonhedonic” food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect. Synapse 44:175–180PubMedCrossRefGoogle Scholar
  129. Walter U, Hoeppner J, Prudente-Morrissey L, Horowski S, Herpertz SC, Benecke R (2007) PD-like midbrain sonography abnormalities are frequent in depressive disorders. Brain 130(Pt 7):1799–17807PubMedCrossRefGoogle Scholar
  130. Walters CL, Godfrey M, Li X, Blendy JA (2005) Alterations in morphine-induced reward, locomotor activity and regulation in CREB-deficient mice. Brain Res 1032:193–199PubMedCrossRefGoogle Scholar
  131. Willner P (1983) Dopamine and depression: a review of recent evidence. I. Empirical studies. Brain Res 3:211–224Google Scholar
  132. Winter C, von Rumohr A, Mundt A, Petrus D, Klein J, Lee T, Morgenstern R, Kupsch A, Juckel G (2007) Lesions of dopaminergic neurons in the substantia nigra pars compacta and in the ventral tegmental area enhance depressive-like behavior in rats. Behav Brain Res 2:133–141CrossRefGoogle Scholar
  133. Wise RA (1978) Catecholamine theories of reward: a critical review. Brain Res 2:215–247CrossRefGoogle Scholar
  134. Wise RA (1980) The dopamine synapse and the notion of ‘pleasure centers’ in the brain. Trends Neurosci 3:91–95CrossRefGoogle Scholar
  135. Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:1–12CrossRefGoogle Scholar
  136. Wise RA, Bozarth MA (1987) A psychostimulant theory of addiction. Psychol Rev 94:469–492PubMedCrossRefGoogle Scholar
  137. Wise RA, Rompre PP (1989) Brain dopamine and reward. Annu Rev Psychol 40:191–225PubMedCrossRefGoogle Scholar
  138. Wyvell CL, Berridge KC (2001) Incentive-sensitization by previous amphetamine exposure: increased cue-triggered ‘wanting’ for sucrose reward. J Neurosci 21:7831–7840PubMedGoogle Scholar
  139. Yim HJ, Gonzales RA (2000) Ethanol-induced increases in dopamine extracellular concentration in rat nucleus accumbens are accounted for by increased release and not uptake inhibition. Alcohol 2:107–115CrossRefGoogle Scholar
  140. Zald DH, Boileau I, El-Dearedy W, Gunn R, McGlone F, Dichter GS, Dagher A (2004) Dopamine transmission in the human striatum during monetary reward tasks. J Neurosci 24:4105–4112PubMedCrossRefGoogle Scholar
  141. Zarate CA Jr, Payne JL, Singh J, Quiroz JA, Luckenbaugh DA, Denicoff KD, Charney DS, Manji HK (2004) Pramipexole for bipolar II depression: a placebo-controlled proof of concept study. Biol Psychiatry 1:54–60CrossRefGoogle Scholar
  142. Zgaljardic DJ, Foldi NS, Borod JC (2004) Cognitive and behavioral dysfunction in Parkinson’s disease: neurochemical and clinicopathological contributions. J Neural Transm 111:1287–1301PubMedCrossRefGoogle Scholar
  143. Zheng T, Wilson CJ (2002) Corticostriatal combinatorics: the implications of corticostriatal axonal arborizations. J Neurophysiol 87:1007–1017PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien Printed in Germany 2009

Authors and Affiliations

  • Claudio Da Cunha
    • 1
    Email author
  • Evellyn Claudia Wietzikoski
    • 1
  • Mariza Bortolanza
    • 1
  • Patricia Andréia Dombrowski
    • 1
  • Lucélia Mendes dos Santos
    • 1
  • Suelen Lúcio Boschen
    • 1
  • Edmar Miyoshi
    • 2
  • Maria Aparecida Barbato Frazão Vital
    • 1
  • Roseli Boerngen-Lacerda
    • 1
  • Roberto Andreatini
    • 1
  1. 1.Laboratório de Fisiologia e Farmacologia do Sistema Nervoso CentralDepartamento de Farmacologia Universidade Federal do Paraná (UFPR)CuritibaBrazil
  2. 2.Departamento de Ciências FarmacêuticasUniversidade Estadual de Ponta Grossa (UEPG)Ponta GrossaBrazil

Personalised recommendations