Skip to main content

Part of the book series: Studies in Space Policy ((STUDSPACE,volume 2))

  • 601 Accesses

Abstract

The context: coping with the increased energy need caused by a growing world population and increasing industrialisation is one of the mega topics of 21st-century international politics. Energy policy has to follow three inherently contradicting goals: the security of supply, efficiency and cost effectiveness as well as environmental compatibility. If a balance cannot be reached globally or on the regional or national level, severe conflicts will arise. Technology developments will therefore have a decisive effect on the evolution of this crucial field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. International Energy Agency; Organisation for Economic Co-operation and Development. World Energy Outlook 2006. Paris: IEA; OECD, 2006.

    Book  Google Scholar 

  2. Hennicke, Peter and Müller, Michael. Weltmacht Energie: Herausforderung für Demokratie und Wohlstand. Stuttgart: Hirzel, 2005, p. 72.

    Google Scholar 

  3. Umbach, Frank. “Sichere Energieversorgung auch in Zukunft: Die Notwendigkeit einer europäischen Strategie.” International Politik 59.8 (2004): 18

    Google Scholar 

  4. Javier Solana, EU High Representative for the Common Foreign and Security Policy, at the EU Energy Conference “Towards an EU External Energy” in Brussels, Belgium, 20 Nov. 2006.

    Google Scholar 

  5. Commission of the European Communities; Secretary General; and High Representative for the Common Foreign and Security Policy. “An External Policy to Serve Europe’s Energy Interests.” Paper from Commission/SG/HR for the European Council. S160/06, 2006.

    Google Scholar 

  6. Amineh, Mehdi P. Globalization, Geopolotics and Energy Security in Central Eurasia and the Caspian Region. The Hague: International Energy Programme, 2003.

    Google Scholar 

  7. Widdershoven, Cvril. “A Gas OPEC in the Making” European Energy Review 1.4 (2008): 36.

    Google Scholar 

  8. British Petroleum. Statistical Review of World Energy. London: BP, 2001 and 2005.

    Google Scholar 

  9. Flavin, Christopher. “Wind Power Sets New Record in 1998: Fastest Growing Energy Source.” Worldwatch Institute Online 29 Dec. 1998. http://www.worldwatch.org/node/1641

    Google Scholar 

  10. “Wind Power Growth Blows Past Projections.” Worldwatch Institute Online 2008. 1 Dec. 2008. http://www.worldwatch.org/node/5698

    Google Scholar 

  11. Commission of the European Communities. “An Energy Policy for Europe.” Communication from the Commission to the European Council and the European Parliament. COM (2007) 1 final, 10 Jan. 2007.

    Google Scholar 

  12. Commission of the European Communities; see endnote 11.

    Google Scholar 

  13. Commission of the European Communities. “Limiting Global Climate Change to 2 Degrees Celsius: The Way A head for 2020 and beyond.” Communication from the Commission to the Council, the European Parliament, the European Economics and Social Committee and the Committee of the Region. COM (2007) 2 final, 10 Jan. 2007.

    Google Scholar 

  14. A commitment to this target was first made in the Council Conclussions of 25 June 1996.

    Google Scholar 

  15. Behrens, Arno. Biofuels or Bicycles? Why the European Union Should Reconsider Its Biofuels Target. CEPS Commentary, 20 Feb. 2008. 1 Dec. 2008. http://shop.ceps.eu/BookDetail. php?item_id=1617

    Google Scholar 

  16. -“Ethanol and Water: Don’t Mix. New Reasons to Be Suspicious of Ethanol.” The Economist, 28 Feb. 2008. 29 Feb. 2008. http://www.economist.com/world/unitedstates/displaystory.cfm?story_id10766882

    Google Scholar 

  17. See: Emission Trading Directive 2003/87/EC. In 2007, the Commission reviewed the EU ETS to ensure that emissions trading would reach its full potential; cf. Commission of the European Communities. “An Energy Policy for Europe.” Communication from the Commission to the European Council and the European Parliament. COM (2007) 1 final, 10. Jan. 2007. p. 11.

    Google Scholar 

  18. Expert Group on Renewable Energy. Increasing Global Renewable Energy Market Share: Recent Trends and Perspectives. New York: United Nations Department of Economic and Social Affairs, 2005. 1 Nov. 2008. http://www.un.org.esa/sustdev/sdissues/energy/op/beijing_re_egm/beijing_re_report.pdf

    Google Scholar 

  19. Expert Group on Renewable Energy. Increasing Global Renewable Energy Market Share: Recent Trends and Perspective. New York: United Nations Department of Economic and Social Affairs, 2005, 1 Nov. 2008., p. 11.

    Google Scholar 

  20. Watson, Kenneth, Kruse, Fred A., and Hummer-Miller, Susanne. “Thermal Infrared Exploration in the Carlin Trend, Northern Nevada.” Geophysics 55.1 (1990): 7–79.

    Google Scholar 

  21. Barnes, Michael. “High Resolution Satellite Imagery Applied to Oil and Gas Projects.” Expanded Abstracts, 75th SEG Annual International Meeting, 2005. 2345–2347.

    Google Scholar 

  22. Mathieu, Pierre-Philippe. “Satellite Data Finding More Uses in E&D, Other Industry Segments.” Oil and Gas Journal 104.3 (2006): 44–48.

    Google Scholar 

  23. Insley, Martin and Andreas Laake. “Satellite Based Seismic Technology, Case Study: Berkine Basin, Algeria.” Extended Abstracts, 66th EAGE Conference & Exhibition, 2004. Paper E032.

    Google Scholar 

  24. Laake, Andreas and Insley, Martin. “Using Satellite Imagery Aids Seismic Surveys in Planning, Acquisition, and Processing.” World Oil 225.9 (2004): 27–33.

    Google Scholar 

  25. Fraser, Andrew J., Huggins, Paul, Cleverley, Paul H., and Rees, John L. “A Satellite Remote-Sensing Technique for Geological Horizon Structure, Mapping.” SEG Technical Program Expanded Abstracts, 65th SEG Annual International Meeting, 1995. 134–137.

    Google Scholar 

  26. Offield, Terry W., Abbott, Elsa A., Gillespie, Alan R., and Loquercio, Sabino O. “Structure Mapping on Enhanced Landsat Images of Southern Brasil: Tectonic Control of Mineralization and Speculations on Metallogeny.” Geophysics 42.3 (1977): 482–500.

    Article  Google Scholar 

  27. Laake, Andreas and Cutts, Andrew. “The Role of Remote Sensing Data in Near-Surface Seismic Characterization.” First Break 25.12 (2007): 61–65.

    Google Scholar 

  28. Xianguo, Huang, Xueqiang, Chen, Shujie, An, and Zhaolong, Xu. “3D Seismic Acquisition in Complex Mountainous Area, YKB, Western China.” SEG Technical Program Expanded Abstracts, 74th SEG Annual International Meeting, 2004. 87–90.

    Google Scholar 

  29. Laake, Andreas, and Insley, Martin. “Applications of Satellite Imagery to Seismic Survey Design.” The Leading Edge 23.10 (2004): 1062–1064.

    Article  Google Scholar 

  30. Gabriel, Andrew K., Goldstein, Richard M., and Zebker, Howard A. “Mapping Small Elevation Changes over Large Areas: Differential Radar Interferometry.” Journal of Geophysical Research 94.B7 (1989): 9183–9191.

    Article  Google Scholar 

  31. ud din, Saif, Al-Dusari, Ahmad, Al-Ghadban, Abdulnabi, and Aritoshi, Mio. “Use of Interferometric Techniques for Detecting Subsidence in the Oil Fields of Kuwait Using Synthetic Aperture Radar Data.” Journal of Petroleum Science and Engineering 50.1 (2006): 1–10.

    Google Scholar 

  32. Sabins, Floyd F. Remote Sensing: Principles and Interpretation. 3rd ed. New York: W.H. Freeman and Co., 1997.

    Google Scholar 

  33. Laake, Andreas and Cutts, Andrew see endnote 28.

    Google Scholar 

  34. Xu, Haibin and Nur, Amos. “Integrating Reservoir Engineering and Satellite Remote Sensing for (True). Continuous Time-Lapse Reservoir Monitoring.” The Leading Edge 20.10 (2001): 1176–1180.

    Google Scholar 

  35. Insley, Martin and Laake, Andreas. “Seismic Quality Analysis in Algeria: Application of Earth Observation Data Sets to Oil & Gas Exploration.” PESGB London Evening Meeting, 2003.

    Google Scholar 

  36. Laake, Andreas and Tewkesbury, Andrew. “Vibroseis Data Quality Estimation from Remote Sensing Data” Expanded Abstracts, 67th EAGE Conference & Exhibition, 2005. Paper G017.

    Google Scholar 

  37. Offield, Terry W., et al.; see endnote 27.

    Google Scholar 

  38. Sabins, Floyd F.; Sabins, Floyd F. Remote Sensing: Principles and Interpretation. 3rd ed. New York: W.H. Freeman and Co., 1997.see endnote 123.

    Google Scholar 

  39. International Energy Agency. World Energy Outlook 2006. Paris: OECD/IEA Publications, 2006. 1 Sept. 2008. http://www.worldenergyoutlook.com/2006.asp

    Book  Google Scholar 

  40. Klimke, Michael. Systemanalytischer, Vergleich von erd-und weltraum-gestützten Solarkraftwerken zur Deckung des globalen Energiebedarfs. Diss. University of Stuttgart, Germany, 2000. DLRFB 2001-12.

    Google Scholar 

  41. Hoffert, Martin I., et al.: “Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet.” Science 298.5595 (2002): 981–987.

    Article  Google Scholar 

  42. Seboldt, Wolfgang. “Space-and Earth-Based Solar Power for the Growing Energy Needs of Future Generations.” Acta Astronautica 55.3-9 (2004) 389–399.

    Article  Google Scholar 

  43. Klimke, Martin and Seboldt, Wolfgang. “Solar Power Plants: Comparison of the Space and Ground Option.” Proceedings of the 49th International Astronautical Congress, Melbourne, Australia, 1998. IAF-98-R.2.03.

    Google Scholar 

  44. Spiegel Online. “Strom aus der Sonne: Kosten und Nutzen.” 4 Apr. 2007. http://www.spiegel.de/fotostrecke/fotostrecke-20593.html

    Google Scholar 

  45. Meliß, Michael, and Manfred Kleemann. Regenerative Energiequellen. Berlin: Springer, 1993.

    Google Scholar 

  46. Heinloth, Klaus. Energie, Stuttgart: Teubner, 1983.

    Google Scholar 

  47. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit. “Entwicklung der erneuerbaren Energien in Deutschland im Jahr 2007: Grafiken und Tabellen.” 12 Mar. 2008. http:/www.eneuerbare-energien.de/inhalt/39830/20010/

    Google Scholar 

  48. Nitsch, Joachim, et al. Ökologisch optimierter Ausbau der Nutzung erneuerbarer Energien in Deutschland. Forschungsvorhaben im Auftrag des Bundesministeriums für Umwelt, Naturschutz und Reaktorisicherheit, FKZ 90141803. Berlin: BMU, 2004.

    Google Scholar 

  49. Güth, G., Häusler, M., and Schlayer, G. “Übertragung elektrischer Energie über große Entfemungen.” Global Link: Interkontinentaler Energieverbund. ed. Verein Deutscher Ingenieure e.V./Gesellschaft Technische Gebäudeausrüstung. VDI Berichte 1129. Düsseldorf: VDI, 1994. 233–249.

    Google Scholar 

  50. Wurster, Reinhold. “Randbedingungen und Systemaspekte für Transport und Speicherung von Wasserstoff.” Global Link: Interkontinentaler Energieverbund. ed. Verein Deutscher Ingenieure e.V./Gesellschaft Technische Gebäudeausrüstung. VDI Berichte 1129. Düsseldorf: VDI, 1994. pp. 141–158.

    Google Scholar 

  51. Klimke, Michael. “New Concepts of Terrestrial and Orbital Solar Power Plants for Future European Power Supply.” Proceedings of the SPS’ 97 Conference: Space and Electric Power for Humanity, Montréal, Canada, 24–28 Aug. 1997. Kanata, Ontario: Canadian Aeronautics and Space Institute; Paris: Société des Électriciens et Électroniciens, 1997. pp. 67–72.

    Google Scholar 

  52. Hendriks, C., Geuder, N., Viebahn, P., Steinsiek, F., and Spies, J. Solar Power from Space: European Strategy in the Light of Sustainable Development. Phase 1: Earth and Space Based Power Generation Systems. Collaboration of Ecofys Netherlands, DLR Germany, and EADS Germany by order of the European Space Agency. EEP 03020. Nordwijk: ESA, Nov. 2004.

    Google Scholar 

  53. Summerer, Leopold and Franco Ongaro. “Solar Power from Space: Validation of Options for Europe.” Proceedings of the 4th International Conference on Solar Power from Space—SPS’ 04, together with the 5th International Conference on Wireless Power Transmission—WPT 5, Granada, Spain, 30 June–2 July 2004. ESA SP-567. Nordwijk: ESA, 2004. pp. 17–26.

    Google Scholar 

  54. Glaser, Peter E. “Power from the Sun: Its Future.” Science 162.3856 (1968): 856–861.

    Google Scholar 

  55. Mankins, John C. “A Fresh Look at Space Solar Power: New Architectures, Concepts and Technologies.” 38th International Astronautical Congress, Turin, Italy, 6–10 Oct. 1997. IAF-97-R.2.03.

    Google Scholar 

  56. Nagatomo, Makoto, Susumu Sasaki, and Yoshihiro Naruo. “Conceptual Study of a Solar Power Satellite, SPS 2000.” Proceedings of the 19th International Symposium on Space Technology and Science, Yokohama, Japan, May 1994. pp. 469–476.

    Google Scholar 

  57. Seboldt, Wolfgang, Klimke, Michael, Leipold, M., and Hanowski, M. “European Sail Tower SPS Concept.” Acta Astronautica 48.5-12 (2001): 785–792.

    Google Scholar 

  58. Gökalp, Iskender, Calabro, Max, Hollanders Hervé, and Deschamps, Lucien. “Space Solar Energy: A Challenge for the European (and International) Community.” 53rd International Astronautical Congress, Houston, TX, 10–19 Oct. 2002. IAC-02-R.1.03.

    Google Scholar 

  59. Mankins, John C. “The Promise and Challenge of Space Solar Power in the 21st Century: Picking Up the Gauntlet.” 53rd International Astronautical Congress, Houston, TX, 10–19 Oct. 2002. IAC-02-R.1.02.

    Google Scholar 

  60. Ruth, J., and W. Westphal. Study on European Aspects of Solar Power Satellites. 2 vols. ESA-CR 3705/78/F/DK(SC), 1979.

    Google Scholar 

  61. National Aeronautics and Space Administration. The Final Proceedings of the Solar Power Satellite Program Review, Lincoln, Nebraska, 22–25 Apr. 1980. NASA-TM-84183.

    Google Scholar 

  62. Glaser, Peter E., Davidson, Frank P. and Csigi, Katinka I. Solar Power Satellites: The Emerging Energy Option. New York: Ellis Horwood, 1993.

    Google Scholar 

  63. Canadian Aeronautics and Space Institute; Société des Électriciens et Électroniciens. Space Power Systems: Energy and Space for Humanity. Proceedings of the SPS’ 97 Conference: Space and Electric Power for Humanity, Montréal, Canada, 24–28 Aug. 1997. Kanata, Ontario: CASI; Paris: SEE, 1997.

    Google Scholar 

  64. Stancati, Michael L., et al. Space Solar Power: A Fresh Look Feasibility Study. Phase 1 Report, SAIC-96/1 038 (Space Applications International Corporation for NASA LeRC Contract NAS3-26565, Schaumburg, Illinois), 1995.

    Google Scholar 

  65. United States House of Representatives, Committee on Appropriations. Bill/Report Making Appropriations for the Departments of Veteran Affairs and Housing and Urban Development. Report 105-00, 25 June 1998.

    Google Scholar 

  66. National Security Space Office. Space-Based Solar Power as an Opportunity for Strategic Security: Phase 0 Architecture Feasibility Study. Report to the Director, National Security Space Office, Interim Assessment. Release 0.1. Washington, D.C.: NSSO, 10 Oct. 2007.

    Google Scholar 

  67. Seboldt, Wolfgang, et al. System Concepts, Architectures and Technologies for Space Exploration and Utilization. SE&U Study, ESA Contract Report 12756/98/NL/JG(SC), 1999.

    Google Scholar 

  68. Seboldt, Wolfgang, Reichert, M., Hanowski, N. and Novara, M. “A Review of the Long-Term Options for Space Exploration and Utilization.” ESA Bulletin 101 (2000): 31–39.

    Google Scholar 

  69. Leipold, M., et al. “Solar Sail Technology Development and Demonstration.” Acta Astronautica 52.2-6 (2003): 317–326.

    Article  Google Scholar 

  70. Seboldt, Wolfgang, et al., “Ground-Based Demonstration of Solar Sail Technology.” Proceedings of the 51st International Astronautical Congress, Rio de Janeiro, Brazil, 2000. IAF-00-S.6.11.

    Google Scholar 

  71. Glaser, Peter. “The Power Relay Satellite.” Space Power 13.1-2 (1994): 1–23.

    Google Scholar 

  72. Ehricke, Krafft A. Space and Energy Sources. Seal Beach, CA: Rockwell International Corporation, Space Systems Division, 1992.

    Google Scholar 

  73. Criswell, David R. “Energy Prosperity within the 21st Century and Beyond: Options and the Unique Roles of the Sun and the Moon.” Innovative Energy Strategies for CO2 Stabilization. ed. Watts, Robert G. Cambridge, UK: Cambridge University Press, 2002. 345–410.

    Google Scholar 

  74. Wittenberg, L.J., Santarius, J.F. and Kulcinski, G.L. “Lunar Source of 3He for Commercial Fusion Power.” Fusion Technology 10.2 (1986): 167–178.

    Google Scholar 

  75. Schmitt, H.H. “My Vision of Our Space Future.” Space Times 29.3 (1990): 10.

    Google Scholar 

  76. Gibson, E.K. Jr. and Johnson, F.S. “Gas Release Pattern for the Apollo-11 Sample 10086.” Proceedings of the 2nd Lunar Science Conference, Houston, TX, 2 Mar. 1971. 1351–1359.

    Google Scholar 

  77. Ruppe, Harry O. “Lunar 3He for Fusion Energy on Earth?” Acta Astronautica 25.10 (1991) 665.

    Article  Google Scholar 

Download references

Authors

Editor information

Kai-Uwe Schrogl Charlotte Mathieu Agnieszka Lukaszczyk

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag/Wien

About this chapter

Cite this chapter

Zlatareva, G., Laake, A., Seboldt, W. (2009). Energy. In: Schrogl, KU., Mathieu, C., Lukaszczyk, A. (eds) Threats, Risks and Sustainability — Answers by Space. Studies in Space Policy, vol 2. Springer, Vienna. https://doi.org/10.1007/978-3-211-87450-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-87450-9_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-87449-3

  • Online ISBN: 978-3-211-87450-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics