Skip to main content

Donor Heart Preservation by Continuous Perfusion

  • Chapter
  • First Online:
New Solutions for the Heart

Abstract

Cardiac transplantation is the best option for end-stage heart failure (Taylor et al. 2008). Transplantation techniques, immunosuppressive protocols and a better understanding of short and long-term complications have increased survival significantly over the last 40 years; however, graft preservation has changed little during that period. Hearts are still preserved by flushing them with cold potassium-based crystalloid solution, with subsequent storage in a sterile container filled with preservation solution containing ice to maintain organ hypothermia. This technique limits a safe preservation time to 4–6 h.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elfattah AS, Jessen ME, Lekven J, et al (1998) Myocardial reperfusion injury. Role of myocardial hypoxanthine and xanthine in free radical-mediated reperfusion injury. Circulation 5(Pt 2):III224–III235.

    Google Scholar 

  • Abd-Elfattah AS, Jessen ME, Lekven J, Wechsler AS (1998) Differential cardioprotection with selective inhibitors of adenosine metabolism and transport: role of purine release in ischemic and reperfusion injury. Mol Cell Biochem 180:179–189.

    Article  PubMed  CAS  Google Scholar 

  • Adachi H, Fraser CD, Kontos GJ, Borkon AM, Hutchins GM, Galloway E, Brawn J, Reitz BA, Baumgartner WA (1987) Autoperfused working heart-lung preparation versus hypothermic cardiopulmonary preservation for transplantation. J Heart Transplant 6(5):253–260.

    PubMed  CAS  Google Scholar 

  • Aupperle H, Garbade J, Ullmann C, Krautz C, Barten MJ, Dhein S, Schoon HA, Gummert FJ. (2007) Ultrastructural findings in porcine hearts after extracorporeal long-term preservation with a modified Langendorff perfusion system. J Vet Med A Physiol Pathol Clin Med 54(5):230–237.

    Article  PubMed  CAS  Google Scholar 

  • Aupperle H, Garbade J, Ullmann C, Schneider K, Krautz C, Dhein S, Gummert JF, Schoon HA. (2007) Comparing the ultrastructural effects of two different cardiac preparation- and perfusion-techniques in a porcine model of extracorporal long-term preservation. Eur J Cardiothorac Surg 31(2):214–221.

    Article  PubMed  Google Scholar 

  • Banner NR, Thomas HL, Curnow E, Hussey JC, Rogers CA, Bonser RS (2008) Steering Group of the United Kingdom Cardiothoracic Transplant Audit. The importance of cold and warm cardiac ischemia for survival after heart transplantation. Transplantation 86(4):542–547.

    Article  PubMed  Google Scholar 

  • Barnard CN (1967) The operation: a human cardiac transplant. S Afr Med J 41:1271–1274.

    PubMed  CAS  Google Scholar 

  • Buckberg GD, Brazier JR, Nelson RL, Goldstein SM, McConnell DH, Cooper N (1977) Studies of the effects of hypothermia on regional myocardial blood flow and metabolism during cardiopulmonary bypass. I. The adequately perfused beating, fibrillating, and arrested heart. J Thorac Cardiovasc Surg 73:87–94

    PubMed  CAS  Google Scholar 

  • Boucek MM, Mashburn C, Dunn SM, Frizell R, Edwards L, Pietra B, Campbell D (2008) Denver Children’s Pediatric Heart Transplant Team. Pediatric heart transplantation after declaration of cardiocirculatory death. N Engl J Med 359(7):709–714.

    Article  PubMed  CAS  Google Scholar 

  • Buckberg GD (1995): Studies of hypoxemic/reoxygenation injury: Linkage between cardiac function and oxidant damage. J Thorac Cardiovasc Surg 110: 1164–1170

    Article  PubMed  CAS  Google Scholar 

  • Calhoon JH, Bunegin L, Gelineau JF, et al (1996): Twelve-hour canine heart preservation with a simple, portable, hypothermic organ perfusion device. Ann Thorac Surg 62: 91–93.

    Article  PubMed  CAS  Google Scholar 

  • Chien S, Diana JN, Oeltgen PR, Todd EP, O’Connor WN, Chitwood WR Jr. (1989) Eighteen to 37 hours’ preservation of major organs using a new autoperfusion multiorgan preparation. Ann Thorac Surg 47(6):860–867.

    Article  PubMed  CAS  Google Scholar 

  • Chien S, Diana JN, Todd EP, O’Connor WN, Marion T, Smith K (1988) New autoperfusion preparation for long-term organ preservation. Circulation 78(5 Pt 2):III58–II165.

    Google Scholar 

  • Chien S, Maley R, Oeltgen PR, O’Connor W, Wu G, Zhang F, Salley RK. (1997) Canine lung transplantation after more than twenty-four hours of normothermic preservation. J Heart Lung Transplant 16(3):340–351.

    PubMed  CAS  Google Scholar 

  • Chien S, Oeltgen PR, Diana JN, Shi X, Nilekani SP, Salley R. (1991) Two-day preservation of major organs with autoperfusion multiorgan preparation and hibernation induction trigger. A preliminary report. J Thorac Cardiovasc Surg 102(2):224–234.

    PubMed  CAS  Google Scholar 

  • Chien SF, Diana JN, Oeltgen PR, Salley R. (1991) Functional studies of the heart during a 24-hour preservation using a new autoperfusion preparation. J Heart Lung Transplant. 10(3):401–8.

    PubMed  CAS  Google Scholar 

  • Cobert ML, West LM, Jessen ME (2008) Machine perfusion for cardiac allograft preservation. Curr Opin Organ Transplant 13(5):526–530

    Article  PubMed  Google Scholar 

  • Collins MJ, Moainie SL, Griffith BP, Poston RS. (2008) Preserving and evaluating hearts with ex vivo machine perfusion: an avenue to improve early graft performance and expand the donor pool. Eur J Cardiothorac Surg 34(2):318–325.

    Article  PubMed  Google Scholar 

  • Conover C, Linberg R, Lejeune L, Gilbert C, Shum K, Shorr RG. (1998) Evaluation of the oxygen delivery ability of PEG-hemoglobin in Sprague Dawley rats during hemodilution. Artif Cells Blood Substit Immobil Biotechnol 26(2):199–212.

    Article  PubMed  CAS  Google Scholar 

  • Cooper DK (1975) Donor heart resuscitation and storage. Surg Gynecol Obstet 140(4):621–31.

    PubMed  CAS  Google Scholar 

  • Cooper DK (1975) Haemodynamic studies during short-term preservation of the autoperfusing heart-lung preparation. Cardiovasc Res 9(6):753–763.

    Article  PubMed  CAS  Google Scholar 

  • Cooper DK (1977) The Haematoxylin-basic Fuchsin-picric acid staining reaction as a test of myocardial viability in resuscitated and preserved hearts. Histochem J 9(3):285–291.

    Article  PubMed  CAS  Google Scholar 

  • Cope JT, Mauney MC, Banks D, Binns OA, De Lima NF, Buchanan SA, Shockey KS, Wilson SW, Kron IL, Tribble CG. (1996) Controlled reperfusion of cardiac grafts from non-heart-beating donors. Ann Thorac Surg 62(5):1418–1423.

    Article  PubMed  CAS  Google Scholar 

  • Ferrera R, Larese A, Marcsek P, et al. (1994) Comparison of different techniques of hypothermic pig heart preservation. Ann Thorac Surg 57:1233–1239.

    Article  PubMed  CAS  Google Scholar 

  • Ferrera R, Marcsek P, Larese A, et al. (1993) Comparison of continuous microperfusion and cold storage for pig heart preservation. J Heart Lung Transplant 12:463–469.

    PubMed  CAS  Google Scholar 

  • Fitton TP, Lin R, Bethea BT, et al. (2004) Impact of 24 h continuous hypothermic perfusion on heart preservation by assessment of oxidative stress. Clin Transplant 18:22–27.

    Article  PubMed  Google Scholar 

  • Garbade J, Krautz C, Aupperle H, Ullmann C, Lehmann S, Kempfert J, Borger MA, Dhein S, Gummert JF, Mohr FW. (2008) Functional, metabolic, and morphological aspects of continuous, normothermic heart preservation: effects of different preparation and perfusion techniques. Tissue Eng Part A. Dec 30.

    Google Scholar 

  • Garcia-Poblete E, Alvarez L, Fernandez H, Escudero C, Torralba A. (1998) Cape Town solution in prolonged myocardial preservation: structural and ultrastructural study. Histol Histopathol 13:21–27.

    PubMed  CAS  Google Scholar 

  • Gohra H, Mori F, Esato K: (1989) The effect of fluorocarbon emulsion on 24-hour canine heart preservation by coronary perfusion. Ann Thorac Surg 48 96–103.

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith KA, Demiris N, Gooi JH, Sharples LD, Jenkins DP, Dhital KK, Tsui SS (2009) Life-years gained by reducing donor heart ischemic times. Transplantation 87(2):243–248.

    Article  PubMed  Google Scholar 

  • Hardesty RL, Griffith BP (1987) Autoperfusion of the heart and lungs for preservation during distant procurement. J Thorac Cardiovasc Surg 93(1):11–18.

    PubMed  CAS  Google Scholar 

  • Hassanein WH, Zellos L, Tyrrell TA, Healey NA, Crittenden MD, Birjiniuk V, Khuri SF. (1998) Continuous perfusion of donor hearts in the beating state extends preservation time and improves recovery of function. J Thorac Cardiovasc Surg 116(5):821–830.

    Article  PubMed  CAS  Google Scholar 

  • He GW. (1997) Hyperkalemia exposure impairs EDHF-mediated endothelial function in the human coronary artery. Ann Thorac Surg 63:84–87.

    Article  PubMed  CAS  Google Scholar 

  • Hendry PJ, Walley VM, Koshal A, et al. (1989) Are temperatures attained by donor hearts during transport too cold? J Thorac Cardiovasc Surg 98:517–522.

    PubMed  CAS  Google Scholar 

  • Hirota M, Ishino K, Fukumasu I, Yoshida K, Mohri S, Shimizu J, Kajiya F, Sano S. (2006) Prediction of functional recovery of 60-minute warm ischemic hearts from asphyxiated canine non-heart-beating donors. J Heart Lung Transplant 25(3):339–344.

    Article  PubMed  Google Scholar 

  • International Society for Heart and Lung Transplant. Overall heart and adult heart transplant statistics [slide 56]. [Updated 2008]. Available from www.ishlt.org/registries/slides.asp?slides=HeartLungRegistry.

  • Jones BU, Serna DL, Beckham G, West J, Smulowitz P, Farber A, Kahwaji C, Connolly P, Steward E, Purdy RE, Milliken JC. (2001) Recovery of cardiac function after standard hypothermic storage versus preservation with Peg-hemoglobin. ASAIO J 47(3):197–201.

    Article  PubMed  CAS  Google Scholar 

  • Jones BU, Serna DL, Smulowitz P, Connolly P, Farber A, Beckham G, Shrivastava V, Kahwaji C, Steward E, Purdy RE, Parker WL, Ages B, Milliken JC. (2003) Extended ex vivo myocardial preservation in the beating state using a novel polyethylene glycolated bovine hemoglobin perfusate based solution. ASAIO J 49(4):388–394.

    PubMed  CAS  Google Scholar 

  • Kioka Y, Tago M, Bando K, et al (1986) Twenty-four hour isolated heart preservation by perfused method with oxygenated solution containing perfluorochemicals and albumin. J Heart Transplant 5: 437–443.

    PubMed  CAS  Google Scholar 

  • Kirklin JK, Naftel DC, Bourge RC, McGiffin DC, Hill JA, Rodeheffer RJ, Jaski BE, Hauptman PJ, Weston M, White-Williams C (2003) Evolving trends in risk profiles and causes of death after heart transplantation: a ten-year multi-institutional study. J Thorac Cardiovasc Surg 125(4):881–890.

    Article  PubMed  CAS  Google Scholar 

  • Koike N, Takeyoshi I, Ohki S, Tsutsumi H, Matsumoto K, Morishita Vohringer M, Mahrholdt H, Yilmaz A, Sechtem U. (2007) Significance of late gadolinium enhancement in cardiovascular magnetic resonance imaging (CMR). Herz 32:129–137.

    Article  Google Scholar 

  • Koike N, Takeyoshi I, Ohki S, Tsutsumi H, Matsumoto K, Morishita Y. (2003) The effect of short-term coronary perfusion using a perfusion apparatus on canine heart transplantation from non-heart- beating donors. J Heart Lung Transplant 22(7):810–817.

    Article  PubMed  Google Scholar 

  • Kontos GJ Jr, Adachi H, Borkon AM, Cameron DE, Baumgartner WA, Hall TS, Hutchins G, Brawn J, Reitz BA (1987) Successful four-hour heart-lung preservation with core-cooling on cardiopulmonary bypass: a simplified model that assesses preservation. J Heart Transplant 6(2):106–111.

    PubMed  Google Scholar 

  • Kontos GJ Jr, Borkon AM, Baumgartner WA, Hutchins GM, Peeler M, Brawn J, Reitz BA. (1988) Neurohumoral modulation of the pulmonary vasoconstrictor response in the autoperfused working heart-lung preparation during cardiopulmonary preservation. Transplantation 45(2):275–279.

    Article  PubMed  Google Scholar 

  • Kontos GJ Jr, Borkon AM, Baumgartner WA, Fonger JD, Hutchins GM, Adachi H, Galloway E, Reitz BA (1988) Improved myocardial and pulmonary preservation by metabolic substrate enhancement in the autoperfused working heart-lung preparation. J Heart Transplant 7(2):140–144.

    PubMed  Google Scholar 

  • Ladowski JS, Kapelanski DP, Teodori MF, Stevenson WC, Hardesty RL, Griffith BP (1985) Use of autoperfusion for distant procurement of heart-lung allografts. J Heart Transplant 4(3):330–333.

    PubMed  CAS  Google Scholar 

  • Ledingham SJ, Braimbridge MV, Hearse DJ (1988) Improved myocardial protection by oxygenation of St. thomas’ Hospital cardioplegic solutions. Studies in the rat. J Thorac Cardiovasc Surg 95:103–111

    CAS  Google Scholar 

  • Levy JF, Bernard HR, Monafo WF (1965) Isolation and storage of artificially oxygenated mammalian hearts. JAMA 191: 1006.

    Article  PubMed  CAS  Google Scholar 

  • Lima B, Rajagopal K, Petersen RP, Shah AS, Soule B, Felker GM, Rogers JG, Lodge AJ, Milano CA (2006) Marginal cardiac allografts do not have increased primary graft dysfunction in alternate list transplantation. Circulation 114:I27–I32.

    Article  PubMed  Google Scholar 

  • Manax WG, Largiader F, Lillehei RC (1966) Whole canine organ preservation: Prolongation in vitro by hypothermia and hyperbaria. JAMA 196: 1121–1124.

    Article  PubMed  CAS  Google Scholar 

  • Marasco SF, Esmore DS, Richardson M, Bailey M, Negri J, Rowland M, Kaye D, Bergin PJ (2007) Prolonged cardiac allograft ischemic time--no impact on long-term survival but at what cost? Clin Transplant 21(3):321–329.

    Article  PubMed  Google Scholar 

  • McCurry K, Jeevanandam V, Mihaljevic T, et al. (2008) Prospective multi-center safety and effectiveness evaluation of the Organ Care System device for cardiac use (PROCEED). J Heart Lung Transplant 27: 166.

    Article  Google Scholar 

  • Menasché P. (1995) The inflammatory response to cardiopulmonary bypass and its impact on postoperative myocardial function. Curr Opin Cardiol 10(6):597–604

    Article  PubMed  Google Scholar 

  • Miyamoto Y, Lajos TZ, Bhayana JN, Bergsland J, Celik CF (1988) Beneficial effects of prostaglandin E1 on autoperfused heart-lung preservation. J Heart Transplant 7(2):135–139.

    PubMed  CAS  Google Scholar 

  • Moers C, Smits JM, Maathuis MH, Treckmann J, van Gelder F, Napieralski BP, van Kasterop-Kutz M, van der Heide JJ, Squifflet JP, van Heurn E, Kirste GR, Rahmel A, Leuvenink HG, Paul A, Pirenne J, Ploeg RJ. (2009) Machine perfusion or cold storage in deceased-donor kidney transplantation. N Engl J Med 360(1):7–19.

    Article  PubMed  CAS  Google Scholar 

  • Morgan JA, John R, Weinberg AD, Kherani AR, Colletti NJ, Vigilance DW, Cheema FH, Bisleri G, Cosola T, Mancini DM, Oz MC, Edwards NM (2003) Prolonged donor ischemic time does not adversely affect long-term survival in adult patients undergoing cardiac transplantation. J Thorac Cardiovasc Surg 126(5):1624–1633.

    Article  PubMed  Google Scholar 

  • Morimoto T, Golding LR, Stewart RW, Harasaki H, Matsushita S, Shimomitsu T, Kasick J, Olsen E, Loop FD, Nose Y (1984) A simple method for extended heart-lung preservation by autoperfusion. Trans Am Soc Artif Intern Organs 30:320–324.

    PubMed  CAS  Google Scholar 

  • Muskett A, Burton NA, Grossman M, Gay WA Jr (1988) The rabbit autoperfusing heart-lung preparation. J Surg Res 44(2):104–108.

    Article  PubMed  CAS  Google Scholar 

  • Naka Y, Hirose H, Matsuda H, Shirakura R, Miyagawa S, Fukushima N, Kawashima Y. (1989) Prevention of pulmonary edema developing in autoperfusing heart-lung preparation by leukocyte depletion. Eur J Cardiothorac Surg 3(4):355–358.

    Article  PubMed  CAS  Google Scholar 

  • Nameki T, Takeyoshi I, Oshima K, Kobayashi K, Sato H, Matsumoto K, Morishita Y. (2006) A comparative study of long-term heart preservation using 12-h continuous coronary perfusion versus 1-h coronary perfusion following 11-h simple immersion. J Surg Res 135(1):107–112.

    Article  PubMed  CAS  Google Scholar 

  • Neely JR, Libermeister H, Battersby EJ, Morgan HE (1967) Effect of pressure development on oxygen consumption by isolated heart. Am J Physiol Heart Cic Physiol 291: 255–256

    Google Scholar 

  • Neely JR, Grotyohann LW. (1984) Role of glycolytic products in damage to ischemic myocardium. Circ Res 55:816–824.

    Article  PubMed  CAS  Google Scholar 

  • Nickless DK, Rabinov M, Richards SM, Conyers RAJ, Rosenfeldt FL (1998) Continuous perfusion improves preservation of donor rat hearts: Importance of the implantation phase. Ann Thorac Surg 65: 1255–1272.

    Article  Google Scholar 

  • Nickless DK, Rabinov M, Richards SM, et al. (1998) Continous perfusion improves preservation of donor rat hearts: Importance of the implantation phase. Ann Thorac Surg 65:1265–1272.

    Article  PubMed  CAS  Google Scholar 

  • Ohtaki A, Ogiwara H, Kazuhiro S, Takahashi T, Morishita Y: (1996) Long-term heart preservation by the combined method of simple immersion and coronary perfusion. J Heart Lung Transplant 15: 269–274,

    PubMed  CAS  Google Scholar 

  • Organ Recovery Systems. Trials. Des Plaines, IL: Organ Recovery Systems. [Updated 2009] Available from http://www.organ-recovery.com/home.php

  • Organ Tranport Systems. Research. Frisco, TX: Organ Transport Systems, Inc. [Updated 2009] Available from http://allezoe.com/default.aspx

  • Osaki S, Ishino K, Kotani Y, Honjo O, Suezawa T, Kanki K, Sano S. (2006) Resuscitation of non-beating donor hearts using continuous myocardial perfusion: the importance of controlled initial reperfusion. Ann Thorac Surg 81(6):2167–2171.

    Article  PubMed  Google Scholar 

  • Oshima K, Takeyoshi I, Mohara J, Tsutsumi H, Ishikawa S, Matsumoto K, Morishita Y. (2005) Long-term preservation using a new apparatus combined with suppression of pro-inflammatory cytokines improves donor heart function after transplantation in a canine model. J Heart Lung Transplant 24(5):602–608.

    Article  PubMed  Google Scholar 

  • Ozeki T, Kwon MH, Gu J, Collins MJ, Brassil JM, Miller Jr MB, Gullapalli RP, Zhuo J, Pierson 3rd RN, Griffith BP, Poston RS. (2007) Heart preservation using continuous ex vivo perfusion improves viability and functional recovery. Circ J 71:153–159.

    Article  PubMed  Google Scholar 

  • Parolari A, Rubini P, Cannata A, Bonati L, Alamanni F, Tremoli E, Biglioli P (2002) Endothelial damage during myocardial preservation and storage. Ann Thorac Surg 73(2):682–690.

    Article  PubMed  Google Scholar 

  • Peltz M, Cobert ML, Rosenbaum DH, West LM, Jessen ME. (2008) Myocardial perfusion characteristics during machine perfusion for heart transplantation. Surgery 144(2):225–232.

    Article  PubMed  Google Scholar 

  • Peltz M, He TT, Adams GA IV, Koshy S, Burgess SC, Chao RY, Meyer DM, Jessen ME. (2005) Perfusion preservation maintains myocardial ATP levels and reduces apoptosis in an ex vivo rat heart transplantation model. Surgery 138(4):795–805.

    Article  PubMed  Google Scholar 

  • Poston RS, Gu J, Prastein D, Gage F, Hoffman JW, Kwon M, Azimzadeh A, Pierson RN 3rd, Griffith BP. (2004) Optimizing donor heart outcome after prolonged storage with endothelial function analysis and continuous perfusion. Ann Thorac Surg 78(4):1362–1370

    Article  PubMed  Google Scholar 

  • Prieto M, Androne PA, Baron P, Gomez-Fleitas M, Runge WA, Jamieson SW, Kaye MP. (1988) Multiple organ retrieval and preservation with normothermic autoperfusion. Transplant Proc 20(5):827–828.

    PubMed  CAS  Google Scholar 

  • Prieto M, Baron P, Andreone PA, Runge WJ, Edwards B, Jamieson SW, Kaye MP. (1988) Multiple ex vivo organ preservation with warm whole blood. J Heart Transplant 7(3):227–237.

    PubMed  CAS  Google Scholar 

  • Proctor E, Parker R (1968) Preservation of isolated heart for 72 hours. Br Med J 4 296–298.

    Article  PubMed  CAS  Google Scholar 

  • Rao V, Feindel CM, Cohen G, Borger MA, Ross HJ, Weisel RD. (2001) Effects of metabolic stimulation on cardiac allograft recovery. Ann Thorac Surg 71(1):219–225.

    Article  PubMed  CAS  Google Scholar 

  • Rao V, Feindel CM, Weisel RD, Boylen P, Cohen G. (1997) Donor blood perfusion improves myocardial recovery after heart transplantation. J Heart Lung Transplant 16(6):667–673.

    PubMed  CAS  Google Scholar 

  • Rao V, Ivanov J, Weisel RD, et al (2001) Lactate release during reperfusion predicts low cardiac output syndrome after coronary bypass surgery. Ann Thorac Surg 71:1925–1930.

    Article  PubMed  CAS  Google Scholar 

  • Riveron FA, Ross JH, Schwartz KA, Casey G, Sanders O, Eisiminger R, Magilligan DJ Jr. (1988) Energy expenditure of autoperfusing heart-lung preparation. Circulation 78(5 Pt 2):III103–III109.

    Google Scholar 

  • Robicsek F, Tam W, Daugherty HK, Robiscok LK (1969) The stabilized autoperfusing heart-lung preparation as a vehicle for extracorporeal preservation. Transplant Proc 1(3):834–839.

    PubMed  CAS  Google Scholar 

  • Rosenbaum DH, Peltz M, DiMaio JM, et al (2008) Perfusion preservation vs. static preservation for cardiac transplantation: effects on myocardial function and metabolism. J Heart Lung Transplant 27:93–99.

    Article  PubMed  Google Scholar 

  • Rosenbaum DH, Peltz M, DiMaio JM, Meyer DM, Wait MA, Merritt ME, Ring WS, Jessen ME. (2008) Perfusion preservation versus static preservation for cardiac transplantation: effects on myocardial function and metabolism. J Heart Lung Transplant 27(1):93–99.

    Article  PubMed  Google Scholar 

  • Rosenbaum DH, Peltz M, Merritt ME, Thatcher JE, Sasaki H, Jessen ME. (2007) Benefits of perfusion preservation in canine hearts stored for short intervals. J Surg Res 140(2):243–249.

    Article  PubMed  Google Scholar 

  • Russo MJ, Chen JM, Sorabella RA, Martens TP, Garrido M, Davies RR, George I, Cheema FH, Mosca RS, Mital S, Ascheim DD, Argenziano M, Stewart AS, Oz MC, NakaY (2007) The effect of ischemic time on survival after heart transplantation varies by donor age: an analysis of the United Network for Organ Sharing database. J Thorac Cardiovasc Surg 133(2):554–559.

    Article  PubMed  Google Scholar 

  • Schmauss D, Weis M. (2008) Cardiac allograft vasculopathy: recent developments. Circulation 117(16):2131–2141

    Article  PubMed  Google Scholar 

  • Segovia J, Pulpon LA, Sanmartin M, Tejero C, Serrano S, Burgos R, Castedo E, Ugarte J (1998) Primary graft failure in heart transplantation: a multivariate analysis. Transplant Proc 30:1932.

    Article  PubMed  CAS  Google Scholar 

  • Smulowitz PB, Serna DL, Beckham GE, Milliken JC. (2000) Ex vivo cardiac allograft preservation by continuous perfusion techniques. ASAIO J 46(4):389–396.

    Article  PubMed  CAS  Google Scholar 

  • Spray TL, Watson DC, Roberts WC: (1960) Morphology of canine hearts after 24 hours’ preservation and orthotopic transplantation. J Thorac Cardiovasc Surg 73: 880–886.

    Google Scholar 

  • Steinberg JB, Doherty NE, Munfakh NA, Geffin GA, Titus JS, Hoaglin DC, Denenberg AG, Daggett WM (1991) Oxygenated cardioplegia: the metabolic and functional effects of glucose and insulin Ann Thorac Surg. 51(4): 620–629

    Article  PubMed  CAS  Google Scholar 

  • Stewart R, Morimoto T, Golding L, Harasaki H, Olsen E, Nose Y (1985) Canine heart-lung autoperfusion. Trans Am Soc Artif Intern Organs 31:206–210.

    PubMed  CAS  Google Scholar 

  • Tam W, Robicsek F, Daugherty HK (1969) The autoperfusing heart-lung preparation: a vehicle for the preservation of the resuscitated cadaver heart. J Thorac Cardiovasc Surg 58(6):879–885

    PubMed  CAS  Google Scholar 

  • Taylor DO, Edwards LB, Aurora P, Christie JD, Dobbels F, Kirk R, Rahmel AO, Kucheryavaya AY, Hertz MI (2008) Registry of the International Society for Heart and Lung Transplantation:twenty-fifth official adult heart transplant report–2008. J Heart Lung Transplant 27(9):943–956.

    Article  PubMed  Google Scholar 

  • Tenderich G, Tsui S, El-Banayosy A, et al. (2008) The 1-year follow-up results of the PROTECT patient population using the Organ Care System. J Heart Lung Transplant 27: 166.

    Article  Google Scholar 

  • Toledo-Pereyra LH, Chee M, Lillehei RC: (1979) Effects of pulsatile perfusion pressure and storage on hearts preserved for 24 hours under hypothermia, for transplantation (Abstract). Ann Thorac Surg 27: 24–31.

    Article  PubMed  CAS  Google Scholar 

  • Transmedics. Heart transplantation. Andover, MA: Transmedics, Inc. [Updated 2009] Available from http://www.transmedics.com.

  • Tsai AG, Intaglietta M. (2002) The unusual properties of effective blood substitutes. Keio J Med 51(1):17–20.

    Article  PubMed  CAS  Google Scholar 

  • Tsutsumi H, Oshima K, Mohara J, Takeyoshi I, Aizaki M, Tokumine M, Matsumoto K, Morishita Y. (2001) Cardiac transplantation following a 24-h preservation using a perfusion apparatus. J Surg Res 96:260–267.

    Article  PubMed  CAS  Google Scholar 

  • Tveita T, Hevroy O, Refsum H, Ytrehus K. (1999) Coronary endothelium-derived vasodilation during cooling and rewarming of the in situ heart. Can J Physiol Pharmacol 77:56–63.

    Article  PubMed  CAS  Google Scholar 

  • Ueda K, Hatanaka M, Kyo S, Takamoto S, Yokote Y, Arima T, Yamashina M, Omoto R (1987) Effect of prostacyclin analog on pulmonary edema in isolated heart-lung autoperfusion model. J Heart Transplant 6(3):155–161.

    PubMed  CAS  Google Scholar 

  • Valentine H. (2003) Cardiac allograft vasculopathy: central role of endothelial injury leading to transplant ‘atheroma’. Transplantation 76:891–899

    Article  Google Scholar 

  • Whiting JF, Delmonico F, Morrissey P, et al. (2006) Clinical results of an organ procurement organization effort to increase utilization of donors after cardiac death. Transplantation 81:1368–1371.

    Article  PubMed  Google Scholar 

  • Wicomb W, Boyd ST, Cooper DK, Rose AG, Barnard CN: (1981) Ex vivo functional evaluation of pig hearts subjected to 24 hours’ preservation by hypothermic perfusion. S Afr Med J 60 245–248.

    PubMed  CAS  Google Scholar 

  • Wicomb W, Cooper DK, Hassoulas J, Rose AG, Barnard CN: (1982) Orthotopic transplantation of the baboon heart after 20 to 24 hours’ preservation by continuous hypothermic perfusion with an oxygenated hyperosmolar solution. J Thorac Cardiovasc Surg 82:133–140.

    Google Scholar 

  • Wicomb WN, Cooper DK, Barnard CN: (1982) Twenty-four hour preservation of the pig heart by a portable perfusion system. Transplantation 34: 246–250.

    Article  PubMed  CAS  Google Scholar 

  • Wicomb WN, Cooper DK, Novitsky D, Barnard CN: (1984) Cardiac transplantation following storage of the donor heart by a portable hypothermic perfusion system. Ann Thorac Surg 37: 243– 248.

    Article  PubMed  CAS  Google Scholar 

  • Wittwer T, Wahlers T. (2008) Marginal donor grafts in heart transplantation: lessons learned from 25 years of experience. Transpl Int 21(2):113–125.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Zuckerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Zuckerman, A., Aliabadi, A., Seebacher, G. (2011). Donor Heart Preservation by Continuous Perfusion. In: Podesser, B., Chambers, D. (eds) New Solutions for the Heart. Springer, Vienna. https://doi.org/10.1007/978-3-211-85548-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-85548-5_14

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-85547-8

  • Online ISBN: 978-3-211-85548-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics