Skip to main content

A brief introduction to mathematical shell theory

  • Chapter
Classical and Advanced Theories of Thin Structures

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 503))

  • 823 Accesses

Abstract

In the first chapter, we study basic notions about surfaces, such as their two fundamental forms, the Gaussian curvature and covariant derivatives. We also state the fundamental theorem of surface theory, which asserts that the Gauß and Codazzi-Mainardi equations constitute sufficient conditions for two matrix fields defined in a simply-connected open subset of ℝ2 to be the two fundamental forms of a surface in a three-dimensional Euclidean space. We also state the corresponding rigidity theorem.

The second chapter, which heavily relies on Chapter 1, begins by a detailed description of the nonlinear and linear equations proposed by W.T. Koiter for modeling thin elastic shells. These equations are “two-dimensional”, in the sense that they are expressed in terms of two curvilinear coordinates used for defining the middle surface of the shell. The existence, uniqueness, and regularity of solutions to the linear Koiter equations is then established, thanks this time to a fundamental “Korn inequality on a surface” and to an “infinitesimal rigid displacement lemma on a surface”.

For the most part, this article is adapted from Chapters 2 and 4 of my book “An Introduction to Differential Geometry with Applications to Elasticity”, Springer, Dordrecht, 2005, the writing of which was substantially supported by two grants from the Research Grants Council of Hong Kong Special Administrative Region, China [Project No. 9040869, City U 100803 and Project No. 9040966, CityU 100604].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Agmon, S.; Douglis, A.; Nirenberg, L. [1964]: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math. 17, 35–92.

    Google Scholar 

  • Akian, J.L. [2003]: A simple proof of the ellipticity of Koiter’s model, Analysis and Applications 1, 1–16.

    Google Scholar 

  • Alexandrescu, O. [1994]: Théorème d’existence pour le modèle bidimensionnel de coque non linéaire de W.T. Koiter, C. R. Acad. Sci. Paris, Sér. I,319, 899–902.

    Google Scholar 

  • Amrouche, C.; Girault, V. [1994]: Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czech. Math. J. 44, 109–140.

    Google Scholar 

  • Anicic, S.; Le Dret, H.; Raoult, A. [2005]: The infinitesimal rigid displacement lemma in Lipschitz coordinates and application to shells with minimal regularity, Math. Methods Appl. Sci. 27, 1283–1299.

    Google Scholar 

  • Bamberger, Y. [1981]: Mécanique de l’Ingénieur, Volume II, Hermann, Paris.

    Google Scholar 

  • Berger M.; Gostiaux, B. [1987]: Géométrie Différentielle: Variétés, Courbes et Surfaces, Presses Universitaires de France, Paris.

    Google Scholar 

  • Bernadou, M.; Ciarlet, P.G. [1976]: Sur l’ellipticité du modèle linéaire de coques de W.T. Koiter, in Computing Methods in Applied Sciences and Engineering (R. Glowinski & J.L. Lions, Editors), pp. 89–136, Lecture Notes in Economics and Mathematical Systems, 134, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Bernadou, M.; Ciarlet, P.G.; Miara, B. [1994]: Existence theorems for two-dimensional linear shell theories, J. Elasticity 34, 111–138.

    Google Scholar 

  • Blouza, A.; Le Dret, H. [1999]: Existence and uniqueness for the linear Koiter model for shells with little regularity, Quart. Appl. Math. 57, 317–337.

    Google Scholar 

  • Bolley, P.; Camus, J. [1976]: Régularité pour une classe de problèmes aux limites elliptiques dégénérés variationnels, C.R. Acad. Sci. Paris, Sér. A 282, 45–47.

    Google Scholar 

  • Borchers, W.; Sohr, H. [1990]: On the equations rot v=g and div u=f with zero boundary conditions, Hokkaido Math. J. 19, 67–87.

    Google Scholar 

  • Do Carmo, M.P. [1976]: Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  • Ciarlet, P.G. [1982]: Introduction à l’Analyse Numérique Matricielle et à l’Optimisation, Masson, Paris (English translation: Introduction to Numerical Linear Algebra and Optimisation, Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  • Ciarlet, P.G. [1988]: Mathematical Elasticity, Volume I: Three-Dimensional Elasticity, North-Holland, Amsterdam.

    Google Scholar 

  • Ciarlet, P.G. [1977]: Mathematical Elasticity, Volume II: Theory of Plates, North-Holland, Amsterdam.

    Google Scholar 

  • Ciarlet, P.G. [2000a]: Mathematical Elasticity, Volume III: Theory of Shells, North-Holland, Amsterdam.

    Google Scholar 

  • Ciarlet, P.G. [2000b]: Un modèle bi-dimensionnel non linéaire de coque analogue à celui de W.T. Koiter, C.R. Acad. Sci. Paris, Sér. I 331, 405–410.

    MATH  MathSciNet  Google Scholar 

  • Ciarlet, P.G. [2005]: An Introduction to Differential Geometry with Applications to Geometry, Springer, Dordrecht.

    Google Scholar 

  • Ciarlet, P.G.; Larsonneur, F. [2001]: On the recovery of a surface with prescribed first and second fundamental forms, J. Math. Pures Appl. 81, 167–185.

    Google Scholar 

  • Ciarlet, P.G.; Lods, V. [1996]: On the ellipticity of linear membrane shell equations, J. Math. Pures Appl. 75, 107–124.

    Google Scholar 

  • Ciarlet, P.G.; Mardare, S. [2001]: On Korn’s inequalities in curvilinear coordinates, Math. Models Methods Appl. Sci. 11, 1379–1391.

    Google Scholar 

  • Ciarlet, P.G.; Miara, B. [1992]: On the ellipticity of linear shell models, Z. angew. Math. Phys. 43, 243–253.

    Google Scholar 

  • Ciarlet, P.G.; Roquefort, A. [2001]: Justification of a two-dimensional nonlinear shell model of Koiter’s type, Chinese Ann. Math. 22B, 129–244.

    Google Scholar 

  • Ciarlet, P.G.; Sanchez-Palencia, E. [1996]: An existence and uniqueness theorem for the two-dimensional linear membrane shell equations. J. Math. Pures Appl. 75, 51–67.

    Google Scholar 

  • Dacorogna, B. [1989]: Direct Methods in the Calculus of Variations, Springer, Berlin.

    Google Scholar 

  • Destuynder, P. [1985]: A classification of thin shell theories, Acta Applicandae Mathematicae 4, 15–63.

    Google Scholar 

  • Duvaut, G.; Lions, J.L. [1972]: Les Inéquations en Mécanique et en Physique, Dunod, Paris (English translation: Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976).

    Google Scholar 

  • Friesecke, G.; James, R.D.; Mora, M.G.; Müller, S. [2003]: Derivation of nonlinear bending theory for shells from three dimensional nonlinear elasticity by Gamma-convergence, C.R. Acad. Sci. Paris, Sér. I, 336, 697–702.

    Google Scholar 

  • Gauss, C.F. [1828]: Disquisitiones generales circas superficies curvas, Commentationes societatis regiae scientiarum Gottingensis recentiores 6, Gttingen.

    Google Scholar 

  • Geymonat, G. [1965]: Sui problemi ai limiti per i sistemi lineari ellittici, Ann. Mat. Pura Appl. 69, 207–284.

    Google Scholar 

  • Geymonat, G.; Gilardi, G. [1998]: Contre-exemples à l’inégalité de Korn et au lemme de Lions dans des domaines irréguliers, in Equations aux Dérivées Partielles et Applications. Articles Dédiés à Jacques-Louis Lions, pp. 541–548, Gauthier-Villars, Paris.

    Google Scholar 

  • Geymonat, G.; Suquet, P. [1986]: Functional spaces for Norton-Hoff materials, Math. Methods Appl. Sci. 8, 206–222.

    Google Scholar 

  • Hartman, P.; Wintner, A. [1950]: On the embedding problem in differential geometry, Amer. J. Math. 72, 553–564.

    Google Scholar 

  • John, F. [1965]: Estimates for the derivatives of the stresses in a thin shell and interior shell equations, Comm. Pure Appl. Math. 18, 235–267.

    Google Scholar 

  • John, F. [1971]: Refined interior equations for thin elastic shells, Comm. Pure Appl. Math. 18, 235–267.

    Google Scholar 

  • Klingenberg, W. [1973]: Eine Vorlesung über Differentialgeometrie, Springer-Verlag, Berlin (English translation: A Course in Differential Geometry, Springer-Verlag, Berlin, 1978).

    Google Scholar 

  • Koiter, W.T. [1966]: On the nonlinear theory of thin elastic shells, Proc. Kon. Ned. Akad. Wetensch. B69, 1–54.

    Google Scholar 

  • Koiter, W.T. [1970]: On the foundations of the linear theory of thin elastic shells, Proc. Kon. Ned. Akad. Wetensch. B73, 169–195.

    Google Scholar 

  • Kühnel, W. [2002]: Differentialgeometrie, Fried. Vieweg & Sohn, Wiesbaden (English translation: Differential Geometry: Curves-Surfaces-Manifolds, American Mathematical Society, Providence, 2002).

    Google Scholar 

  • Le Dret, H. [2004]: Well-posedness for Koiter and Naghdi shells with a G 1-midsurface, Analysis and Applications 2, 365–388.

    Google Scholar 

  • Le Dret, H.; Raoult, A. [1996]: The membrane shell model in nonlinear elasticity: A variational asymptotic derivation, J. Nonlinear Sci. 6, 59–84.

    Google Scholar 

  • Lods, V. & Miara, B. [1998]: Nonlinearly elastic shell models. II. The flexural model, Arch. Rational Mech. Anal. 142, 355–374.

    Google Scholar 

  • Magenes, E.; Stampacchia, G. [1958]: I problemi al contorno per le equazioni differenziali di tipo ellittico, Ann. Scuola Norm. Sup. Pisa 12, 247–358.

    Google Scholar 

  • Mardare, S. [2003a]: Inequality of Korn’s type on compact surfaces without boundary, Chinese Annals Math. 24B, 191–204.

    Article  MathSciNet  Google Scholar 

  • Mardare, S. [2003b]: The fundamental theorem of surface theory for surfaces with little regularity, J. Elasticity 73, 251–290.

    Article  MATH  MathSciNet  Google Scholar 

  • Mardare, S. [2005]: On Pfaff systems with L p coefficients and their applications in differential geometry, J. Math. Pures Appl., to appear.

    Google Scholar 

  • Miara, B. [1998]: Nonlinearly elastic shell models. I. The membrane model, Arch. Rational Mech. Anal. 142, 331–353.

    Google Scholar 

  • Morrey, Jr., C.B. [1952]: Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2, 25–53.

    Google Scholar 

  • Nečas, J. [1967]: Les Méthodes Directes en Théorie des Equations Elliptiques, Masson, Paris.

    Google Scholar 

  • Schwartz, L. [1966]: Théorie des Distributions, Hermann, Paris.

    Google Scholar 

  • Schwartz, L. [1992]: Analyse II: Calcul Différentiel et Equations Différentielles, Hermann, Paris.

    Google Scholar 

  • Spivak, M. [1999]: A Comprehensive Introduction to Differential Geometry, Volumes I to V, Third Edition, Publish or Perish, Berkeley.

    Google Scholar 

  • Stein, E. [1970]: Singular Integrals and Differentiability Properties of Functions, Princeton University Press.

    Google Scholar 

  • Stoker, J.J. [1969]: Differential Geometry, John Wiley, New York.

    Google Scholar 

  • Tartar, L. [1978]: Topics in Nonlinear Analysis, Publications Mathématiques d’Orsay No. 78.13, Université de Paris-Sud, Orsay.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 CISM, Udine

About this chapter

Cite this chapter

Ciarlet, P.G. (2008). A brief introduction to mathematical shell theory. In: Morassi, A., Paroni, R. (eds) Classical and Advanced Theories of Thin Structures. CISM International Centre for Mechanical Sciences, vol 503. Springer, Vienna. https://doi.org/10.1007/978-3-211-85430-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-85430-3_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-85429-7

  • Online ISBN: 978-3-211-85430-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics