Skip to main content

Abstract

Primary myelodysplastic syndromes (MDS), the most common hematologic malignancy to affect the elderly, are clonal disorders of hematopoietic stem cells. MDS is characterized by an increased but ineffective and dysplastic hematopoiesis as well as peripheral cytopenias. The abnormal hematopoietic clone partly gives rise to mature, but functionally and morphologically abnormal blood cells, and, at least in some cases, is capable of both myeloid and lymphoid differentiation ([1] and reviewed in [2]). The term “Myelodysplastic Syndromes” encompasses a heterogenous group of diseases that can form a continuum from relatively indolent clonally derived refractory anemias with or without ringsideroblasts (RARS, RA) or unilineage thrombocytopenias, to clonal multilineage dysplasias (RCMD) and refractory anemia with excess blasts (RAEB), sometimes also termed oligoblastic leukemia (see currently valid WHO-classification of MDS, Table 6.1). Approximately 1/3 of all MDS patients, more so patients with advanced stage MDS such as RAEB-I and RAEB-II, eventually progress to overt acute myeloid leukemia (AML). One might argue, that the terminus “myelodysplasia” was ill-chosen to denote a clonal neoplastic stem cell disorder, as it implicates a non-neoplastic reactive process, but it nevertheless reflects the most prominent cytological and histological findings required for the diagnosis.

WHO-Classification of the Myelodysplastic Syndromes (adapted from [492])

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Okada M, Okamoto T, Takemoto Y, Kanamaru A, Kakishita E (2000) Function and X chromosome inactivation analysis of B lymphocytes in myelodysplastic syndromes with immunological abnormalities. Acta Haematol 102: 124–130

    Article  CAS  PubMed  Google Scholar 

  2. Disperati P, Ichim CV, Tkachuk D, Chun K, Schuh AC, Wells RA (2006) Progression of myelodysplasia to acute lymphoblastic leukaemia: implications for disease biology. Leuk Res 30: 233–239

    Article  CAS  PubMed  Google Scholar 

  3. Arriaga F, Bonanad S, Larrea L et al. (1995) Immunohematologic study in 112 patients with myelodysplastic syndromes: 10-year analysis. Sangre (Barc) 40: 177–180

    CAS  Google Scholar 

  4. Novaretti MC, Sopelete CR, Velloso ER, Rosa MF, Dorlhiac-Llacer PE, Chamone DA (2001) Immunohematological findings in myelodysplastic syndrome. Acta Haematol 105: 1–6

    Article  CAS  PubMed  Google Scholar 

  5. Phekoo KJ, Richards MA, Moller H, Schey SA (2006) The incidence and outcome of myeloid malignancies in 2,112 adult patients in South East-England. Haematologica 91: 1400–1404

    PubMed  Google Scholar 

  6. Aul C, Gattermann N, Schneider W (1992) Age-related incidence and other epidemiological aspects of myelodysplastic syndromes. Br J Haematol 82: 358–367

    Article  CAS  PubMed  Google Scholar 

  7. Aul C, Germing U, Gattermann N, Minning H (1998) Increasing incidence of myelodysplastic syndromes: real or fictitious? Leuk Res 22: 93–100

    Article  CAS  PubMed  Google Scholar 

  8. Germing U, Aul C, Niemeyer CM, Haas R, Bennett JM (2008) Epidemiology, classification and prognosis of adults and children with myelodysplastic syndromes. Ann Hematol 87: 691–699

    Article  PubMed  Google Scholar 

  9. Rollison DE, Howlader N, Smith MT et al. (2008) Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States, 2001–2004, using data from the NAACCR and SEER programs. Blood 112: 45–52

    Article  CAS  PubMed  Google Scholar 

  10. Bernasconi P (2008) Molecular pathways in myelodysplastic syndromes and acute myeloid leukemia: relationships and distinctions — a review. Br J Haematol 142: 695–708

    Article  CAS  PubMed  Google Scholar 

  11. Corey SJ, Minden MD, Barber DL, Kantarjian H, Wang JC, Schimmer AD (2007) Myelodysplastic syndromes: the complexity of stem-cell diseases. Nat Rev Cancer 7: 118–129

    Article  CAS  PubMed  Google Scholar 

  12. Parker JE, Mufti GJ, Rasool F, Mijovic A, Devereux S, Pagliuca A (2000) The role of apoptosis, proliferation, and the Bcl-2-related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to MDS. Blood 96: 3932–3938

    CAS  PubMed  Google Scholar 

  13. Sun H, Ma J, Sun L, Liu LX, Zhao LM (2006) Expressions of survivin, Bcl-2 and VEGF in patients with myelodysplastic syndrome and their relationship. Zhongguo Shi Yan Xue Ye Xue Za Zhi 14: 271–275

    CAS  PubMed  Google Scholar 

  14. Hamdi W, Ogawara H, Handa H, Tsukamoto N, Nojima Y, Murakami H (2009) Clinical significance of regulatory T cells in patients with myelodysplastic syndrome. Eur J Haematol 82 (3): 201–207. Epub 2008

    Article  CAS  PubMed  Google Scholar 

  15. Epperson DE, Nakamura R, Saunthararajah Y, Melenhorst J, Barrett AJ (2001) Oligoclonal T cell expansion in myelodysplastic syndrome: evidence for an autoimmune process. Leuk Res 25: 1075–1083

    Article  CAS  PubMed  Google Scholar 

  16. Barcellini W, Zaninoni A, Imperiali FG et al. (2007) Anti-erythroblast autoimmunity in early myelodysplastic syndromes. Haematologica 92: 19–26

    Article  CAS  PubMed  Google Scholar 

  17. Voulgarelis M, Giannouli S, Ritis K, Tzioufas AG (2004) Myelodysplasia-associated autoimmunity: clinical and pathophysiologic concepts. Eur J Clin Invest 34: 690–700

    Article  CAS  PubMed  Google Scholar 

  18. Saif MW, Hopkins JL, Gore SD (2002) Autoimmune phenomena in patients with myelodysplastic syndromes and chronic myelomonocytic leukemia. Leuk Lymphoma 43: 2083–2092

    Article  PubMed  Google Scholar 

  19. Kotsianidis I, Bouchliou I, Nakou E et al. (2009) Kinetics, function and bone marrow trafficking of CD4 (+) CD25 (+) FOXP3 (+) regulatory T cells in myelodysplastic syndromes (MDS). Leukemia 23 (3): 510–518. Epub 2008

    Article  CAS  PubMed  Google Scholar 

  20. von Boehmer H (2005) Mechanisms of suppression by suppressor T cells. Nat Immunol 6: 338–344

    Article  CAS  Google Scholar 

  21. Hamdi W, Ogawara H, Handa H, Tsukamoto N, Murakami H (2008) Clinical significance of Th1/Th2 ratio in patients with myelodysplastic syndrome. Int J Lab Hematol 2008 Aug. 6 [Epub ahead of print]

    Google Scholar 

  22. Kordasti SY, Ingram W, Hayden J et al. (2007) CD4+CD25 high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS). Blood 110: 847–850

    Article  CAS  PubMed  Google Scholar 

  23. Epling-Burnette PK, Bai F, Painter JS et al. (2007) Reduced natural killer (NK) function associated with high-risk myelodysplastic syndrome (MDS) and reduced expression of activating NK receptors. Blood 109: 4816–4824

    Article  CAS  PubMed  Google Scholar 

  24. Galustian C, Meyer B, Labarthe MC et al. (2009) The anticancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol Immunother 58 (7): 1033–1045. Epub 2008

    Article  CAS  PubMed  Google Scholar 

  25. Sloand EM, Pfannes L, Chen G et al. (2007) CD34 cells from patients with trisomy 8 myelodysplastic syndrome (MDS) express early apoptotic markers but avoid programmed cell death by up-regulation of antiapoptotic proteins. Blood 109: 2399–2405

    Article  CAS  PubMed  Google Scholar 

  26. Iwasaki T, Sugisaki C, Nagata K et al. (2007) Wilms’ tumor 1 message and protein expression in bone marrow failure syndrome and acute leukemia. Pathol Int 57: 645–651

    Article  CAS  PubMed  Google Scholar 

  27. Li X, Wu L, Ying S, Chang C, Pu Q (2007) Wilms’ tumor gene (WT1) is predominantly expressed in clonal hematopoietic cells in myelodysplastic syndromes. Leuk Lymphoma 48: 601–604

    Article  PubMed  Google Scholar 

  28. Yang JK, Li JL, Li ZG et al. (2003) Wilms’ tumor-1 gene expression in myelodysplastic syndrome and its changes in the process of myelodysplastic syndrome transforming into acute leukemia. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 15: 557–559

    CAS  PubMed  Google Scholar 

  29. Bergmann L, Miething C, Maurer U et al. (1997) High levels of Wilms’ tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood 90: 1217–1225

    CAS  PubMed  Google Scholar 

  30. Rezvani K, Yong AS, Mielke S et al. (2008) Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood 111: 236–242

    Article  CAS  PubMed  Google Scholar 

  31. Kawakami M, Oka Y, Tsuboi A et al. (2007) Clinical and immunologic responses to very low-dose vaccination with WT1 peptide (5 mg/body) in a patient with chronic myelomonocytic leukemia. Int J Hematol 85: 426–429

    Article  CAS  PubMed  Google Scholar 

  32. Oka Y, Tsuboi A, Murakami M et al. (2003) Wilms tumor gene peptide-based immunotherapy for patients with overt leukemia from myelodysplastic syndrome (MDS) or MDS with myelofibrosis. Int J Hematol 78: 56–61

    Article  CAS  PubMed  Google Scholar 

  33. Saunthararajah Y, Nakamura R, Nam JM et al. (2002) HLA-DR15 (DR2) is overrepresented in myelodysplastic syndrome and aplastic anemia and predicts a response to immunosuppression in myelodysplastic syndrome. Blood 100: 1570–1574

    CAS  PubMed  Google Scholar 

  34. Bendtzen K, Morling N, Fomsgaard A et al. (1988) Association between HLA-DR2 and production of tumour necrosis factor alpha and interleukin 1 by mononuclear cells activated by lipopolysaccharide. Scand J Immunol 28: 599–606

    Article  CAS  PubMed  Google Scholar 

  35. Saunthararajah Y, Nakamura R, Wesley R, Wang QJ, Barrett AJ (2003) A simple method to predict response to immunosuppressive therapy in patients with myelodysplastic syndrome. Blood 102: 3025–3027

    Article  CAS  PubMed  Google Scholar 

  36. Sloand EM, Wu CO, Greenberg P, Young N, Barrett J (2008) Factors affecting response and survival in patients with myelodysplasia treated with immunosuppressive therapy. J Clin Oncol 26: 2505–2511

    Article  PubMed  Google Scholar 

  37. Zhang YZ, Zhao DD, Han XP, Jin HJ, Da WM, Yu L (2008) In vitro study of biological characteristics of mesenchymal stem cells in patients with low-risk myelodysplastic syndrome. Zhongguo Shi Yan Xue Ye Xue Za Zhi 16: 813–818

    CAS  PubMed  Google Scholar 

  38. Flores-Figueroa E, Gutierrez-Espindola G, Montesinos JJ, Arana-Trejo RM, Mayani H (2002) In vitro characterization of hematopoietic microenvironment cells from patients with myelodysplastic syndrome. Leuk Res 26: 677–686

    Article  CAS  PubMed  Google Scholar 

  39. Kerbauy DB, Deeg HJ (2007) Apoptosis and antiapoptotic mechanisms in the progression of myelodysplastic syndrome. Exp Hematol 35: 1739–1746

    Article  CAS  PubMed  Google Scholar 

  40. Ramakrishnan A, Awaya N, Bryant E, Torok-Storb B (2006) The stromal component of the marrow microenvironment is not derived from the malignant clone in MDS. Blood 108: 772–773

    Article  CAS  PubMed  Google Scholar 

  41. Soenen-Cornu V, Tourino C, Bonnet ML et al. (2005) Mesenchymal cells generated from patients with myelodysplastic syndromes are devoid of chromosomal clonal markers and support short-and long-term hematopoiesis in vitro. Oncogene 24: 2441–2448

    Article  CAS  PubMed  Google Scholar 

  42. Flores-Figueroa E, Arana-Trejo RM, Gutierrez-Espindola G, Perez-Cabrera A, Mayani H (2005) Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization. Leuk Res 29: 215–224

    Article  CAS  PubMed  Google Scholar 

  43. Greil R, Anether G, Johrer K, Tinhofer I (2003) Tuning the rheostat of the myelopoietic system via Fas and TRAIL. Crit Rev Immunol 23: 301–322

    Article  CAS  PubMed  Google Scholar 

  44. Mhyre AJ, Marcondes AM, Spaulding EY, Deeg HJ (2009) Stroma-dependent apoptosis in clonal hematopoietic precursors correlates with expression of PYCARD. Blood 113: 649–658

    Article  CAS  PubMed  Google Scholar 

  45. Raza A, Qawi H, Lisak L et al. (2000) Patients with myelodysplastic syndromes benefit from palliative therapy with amifostine, pentoxifylline, and ciprofloxacin with or without dexamethasone. Blood 95: 1580–1587

    CAS  PubMed  Google Scholar 

  46. Keith T, Araki Y, Ohyagi M et al. (2007) Regulation of angiogenesis in the bone marrow of myelodysplastic syndromes transforming to overt leukaemia. Br J Haematol 137: 206–215

    Article  CAS  PubMed  Google Scholar 

  47. Bellamy WT, Richter L, Sirjani D et al. (2001) Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood 97: 1427–1434

    Article  CAS  PubMed  Google Scholar 

  48. Wimazal F, Krauth MT, Vales A et al. (2006) Immunohistochemical detection of vascular endothelial growth factor (VEGF) in the bone marrow in patients with myelodysplastic syndromes: correlation between VEGF expression and the FAB category. Leuk Lymphoma 47: 451–460

    Article  CAS  PubMed  Google Scholar 

  49. Gilliland DG, Griffin JD (2002) Role of FLT3 in leukemia. Curr Opin Hematol 9: 274–281

    Article  PubMed  Google Scholar 

  50. Watanabe-Okochi N, Kitaura J, Ono R et al. (2008) AML1 mutations induced MDS and MDS/AML in a mouse BMT model. Blood 111 (8): 4297–4308

    Article  CAS  PubMed  Google Scholar 

  51. Schessl C, Rawat VP, Cusan M et al. (2005) The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J Clin Invest 115: 2159–2168

    Article  CAS  PubMed  Google Scholar 

  52. Zhang J, Socolovsky M, Gross AW, Lodish HF (2003) Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: functional analysis by a flow cytometry-based novel culture system. Blood 102: 3938–3946

    Article  CAS  PubMed  Google Scholar 

  53. Nilsson L, Astrand-Grundstrom I, Anderson K et al. (2002) Involvement and functional impairment of the CD34 (+) CD38 (−) Thy-1 (+) hematopoietic stem cell pool in myelodysplastic syndromes with trisomy 8. Blood 100: 259–267

    CAS  PubMed  Google Scholar 

  54. Benito AI, Bryant E, Loken MR et al. (2003) NOD/SCID mice transplanted with marrow from patients with myelodysplastic syndrome (MDS) show long-term propagation of normal but not clonal human precursors. Leuk Res 27: 425–436

    Article  CAS  PubMed  Google Scholar 

  55. Thanopoulou E, Cashman J, Kakagianne T, Eaves A, Zoumbos N, Eaves C (2004) Engraftment of NOD/SCID-beta2 microglobulin null mice with multilineage neoplastic cells from patients with myelodysplastic syndrome. Blood 103: 4285–4293

    Article  CAS  PubMed  Google Scholar 

  56. Harada H, Harada Y, Tanaka H, Kimura A, Inaba T (2003) Implications of somatic mutations in the AML1 gene in radiation-associated and therapy-related myelodysplastic syndrome/acute myeloid leukemia. Blood 101: 673–680

    Article  CAS  PubMed  Google Scholar 

  57. Harada H, Harada Y, Niimi H, Kyo T, Kimura A, Inaba T (2004) High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood 103: 2316–2324

    Article  CAS  PubMed  Google Scholar 

  58. Harada H, Harada Y (2005) Point mutations in the AML1/RUNX1 gene associated with myelodysplastic syndrome. Crit Rev Eukaryot Gene Expr 15: 183–196

    CAS  PubMed  Google Scholar 

  59. Harada H, Harada Y, Kimura A (2006) Implications of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome (MDS): future molecular therapeutic directions for MDS. Curr. Cancer Drug Targets. 6: 553–565

    Article  CAS  PubMed  Google Scholar 

  60. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR (1996) AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84: 321–330

    Article  CAS  PubMed  Google Scholar 

  61. Ichikawa M, Asai T, Saito T et al. (2004) AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 10: 299–304

    Article  CAS  PubMed  Google Scholar 

  62. Schneider F, Bohlander SK, Schneider S et al. (2007) AML1-ETO meets JAK2: clinical evidence for the two hit model of leukemogenesis from a myeloproliferative syndrome progressing to acute myeloid leukemia. Leukemia 21: 2199–2201

    Article  CAS  PubMed  Google Scholar 

  63. Song WJ, Sullivan MG, Legare RD et al. (1999) Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 23: 166–175

    Article  CAS  PubMed  Google Scholar 

  64. Russell M, List A, Greenberg P et al. (1994) Expression of EVI1 in myelodysplastic syndromes and other hematologic malignancies without 3q26 translocations. Blood 84: 1243–1248

    CAS  PubMed  Google Scholar 

  65. Soderholm J, Kobayashi H, Mathieu C, Rowley JD, Nucifora G (1997) The leukemia-associated gene MDS1/ EVI1 is a new type of GATA-binding transactivator. Leukemia 11: 352–358

    Article  CAS  PubMed  Google Scholar 

  66. Dreyfus F, Bouscary D, Melle J, Ribrag V, Guesnu M, Varet B (1995) Expression of the Evi-1 gene in myelodysplastic syndromes. Leukemia 9: 203–205

    CAS  PubMed  Google Scholar 

  67. Martinelli G, Ottaviani E, Buonamici S et al. (2003) Association of 3q21q26 syndrome with different RPN1/ EVI1 fusion transcripts. Haematologica 88: 1221–1228

    CAS  PubMed  Google Scholar 

  68. Xu K, Wang L, Hao Y et al. (1999) Evi-1 and MDS1-Evi-1 genes in pathogenesis of myelodysplastic syndromes and post-MDS acute myeloid leukemia. Chin Med J (Engl) 112: 1112–1118

    CAS  Google Scholar 

  69. Buonamici S, Li D, Chi Y et al. (2004) EVI1 induces myelodysplastic syndrome in mice. J Clin Invest 114: 713–719

    CAS  PubMed  Google Scholar 

  70. Golub TR, Barker GF, Lovett M, Gilliland DG (1994) Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t (5;12) chromosomal translocation. Cell 77: 307–316

    Article  CAS  PubMed  Google Scholar 

  71. Wlodarska I, Mecucci C, Marynen P et al. (1995) TEL gene is involved in myelodysplastic syndromes with either the typical t (5;12) (q33;p13) translocation or its variant t (10;12) (q24; p13). Blood 85: 2848–2852

    CAS  PubMed  Google Scholar 

  72. Arber DA, Chang KL, Lyda MH, Bedell V, Spielberger R, Slovak ML (2003) Detection of NPM/MLF1 fusion in t (3;5)-positive acute myeloid leukemia and myelodysplasia. Hum Pathol 34: 809–813

    Article  CAS  PubMed  Google Scholar 

  73. Wu Y, Xue Y, Zhao M, Chen S, Pan J, Lu D (2002) Clinical and experimental study of two cases of myelodysplastic syndrome with t (3;5) (q25;q34) translocation. Zhonghua Xue Ye Xue Za Zhi 23: 304–306

    PubMed  Google Scholar 

  74. Sharp RA, Robertson J, Heppleston AD (1987) t (3;5) (q21; q31) in a myelodysplastic syndrome. Leuk Res 11: 629–633

    Article  CAS  PubMed  Google Scholar 

  75. Lindgren V, Gibson L, Yang-Feng TL (1991) der (3)t (3;5). Another recurring abnormality in myelodysplastic disorder. Cancer Genet Cytogenet 54: 129–131

    Article  CAS  PubMed  Google Scholar 

  76. Yoneda-Kato N, Fukuhara S, Kato J (1999) Apoptosis induced by the myelodysplastic syndrome-associated NPM-MLF1 chimeric protein. Oncogene 18: 3716–3724

    Article  CAS  PubMed  Google Scholar 

  77. Grisendi S, Bernardi R, Rossi M et al. (2005) Role of nucleophosmin in embryonic development and tumorigenesis. Nature 437: 147–153

    Article  CAS  PubMed  Google Scholar 

  78. Lin YW, Slape C, Zhang Z, Aplan PD (2005) NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia. Blood 106: 287–295

    Article  CAS  PubMed  Google Scholar 

  79. Moody JL, Jirik FR (2004) Compound heterozygosity for Pten and SHIP augments T-dependent humoral immune responses and cytokine production by CD (4+) T cells. Immunology 112: 404–412

    Article  CAS  PubMed  Google Scholar 

  80. Fenaux P (2001) Chromosome and molecular abnormalities in myelodysplastic syndromes. Int J Hematol 73: 429–437

    Article  CAS  PubMed  Google Scholar 

  81. Darley RL, Hoy TG, Baines P, Padua RA, Burnett AK (1997) Mutant N-RAS induces erythroid lineage dysplasia in human CD34+ cells. J Exp Med 185: 1337–1347

    Article  CAS  PubMed  Google Scholar 

  82. Braun BS, Archard JA, Van Ziffle JA, Tuveson DA, Jacks TE, Shannon K (2006) Somatic activation of a conditional KrasG12D allele causes ineffective erythropoiesis in vivo. Blood 108: 2041–2044

    Article  CAS  PubMed  Google Scholar 

  83. Bacher U, Haferlach T, Kern W, Haferlach C, Schnittger S (2007) A comparative study of molecular mutations in 381 patients with myelodysplastic syndrome and in 4130 patients with acute myeloid leukemia. Haematologica 92: 744–752

    Article  CAS  PubMed  Google Scholar 

  84. Tada Y, Ho A, Matsuyama T, Mak TW (1997) Reduced incidence and severity of antigen-induced autoimmune diseases in mice lacking interferon regulatory factor-1. J Exp Med 185: 231–238

    Article  CAS  PubMed  Google Scholar 

  85. Tanaka N, Ishihara M, Kitagawa M et al. (1994) Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1. Cell 77: 829–839

    Article  CAS  PubMed  Google Scholar 

  86. Abdollahi A, Lord KA, Hoffman-Liebermann B, Liebermann DA (1991) Interferon regulatory factor 1 is a myeloid differentiation primary response gene induced by interleukin 6 and leukemia inhibitory factor: role in growth inhibition. Cell Growth Differ 2: 401–407

    CAS  PubMed  Google Scholar 

  87. Giannouli S, Tzoanopoulos D, Ritis K, Kartalis G, Moutsopoulos HM, Voulgarelis M (2004) Autoimmune manifestations in human myelodysplasia: a positive correlation with interferon regulatory factor-1 (IRF-1) expression. Ann Rheum Dis 63: 578–582

    Article  CAS  PubMed  Google Scholar 

  88. Maratheftis CI, Bolaraki PE, Giannouli S, Kapsogeorgou EK, Moutsopoulos HM, Voulgarelis M (2006) Aberrant alternative splicing of interferon regulatory factor-1 (IRF-1) in myelodysplastic hematopoietic progenitor cells. Leuk Res 30: 1177–1186

    Article  CAS  PubMed  Google Scholar 

  89. Willman CL, Sever CE, Pallavicini MG et al. (1993) Deletion of IRF-1, mapping to chromosome 5q31.1, in human leukemia and preleukemic myelodysplasia. Science 259: 968–971

    Article  CAS  PubMed  Google Scholar 

  90. de la CA, Lahtinen R (1987) Monosomy 7 predisposes to diabetes insipidus in leukaemia and myelodysplastic syndrome. Eur J Haematol 39: 404–411

    Google Scholar 

  91. Soppi E, Nousiainen T, Seppa A, Lahtinen R (1989) Acute febrile neutrophilic dermatosis (Sweet’s syndrome) in association with myelodysplastic syndromes: a report of three cases and a review of the literature. Br J Haematol 73: 43–47

    Article  CAS  PubMed  Google Scholar 

  92. Clark RE, Payne HE, Jacobs A, West RR (1987) Primary myelodysplastic syndrome and cancer. Br Med J (Clin Res Ed) 294: 937–938

    Article  CAS  Google Scholar 

  93. Sans-Sabrafen J, Buxo-Costa J, Woessner S et al. (1992) Myelodysplastic syndromes and malignant solid tumors: analysis of 21 cases. Am J Hematol 41: 1–4

    Article  CAS  PubMed  Google Scholar 

  94. Florensa L, Vallespi T, Woessner S et al. (1996) Incidence and characteristics of lymphoid malignancies in untreated myelodysplastic syndromes. Leuk Lymphoma 23: 609–612

    Article  CAS  PubMed  Google Scholar 

  95. (1987) French registry of acute leukemia and myelodysplastic syndromes. Age-distribution and hemogram analysis of the 4496 cases recorded during 1982-1983 and classified according to FAB criteria. Groupe Francais de Morphologie Hematologique. Cancer 60: 1385–1394

    Google Scholar 

  96. Linman JW, Bagby C Jr (1976) The preleukemic syndrome: clinical and laboratory features, natural course, and management. Nouv Rev Fr Hematol Blood Cells 17: 11–31

    CAS  PubMed  Google Scholar 

  97. Linman JW, Bagby GC Jr (1978) The preleukemic syndrome (hemopoietic dysplasia). Cancer 42: 854–864

    Article  CAS  PubMed  Google Scholar 

  98. Kerndrup G, Bendix-Hansen K, Pedersen B, Ellegaard J, Hokland P (1988) Analysis of leucocyte differentiation antigens in blood and bone marrow in patients with refractory anaemia (RA) and RA with sideroblasts. Prognostic implications of sequential and follow-up data. Eur J Haematol 41: 368–374

    CAS  PubMed  Google Scholar 

  99. Anderson RW, Volsky DJ, Greenberg B et al. (1983) Lymphocyte abnormalities in preleukemia—I. Decreased NK activity, anomalous immunoregulatory cell subsets and deficient EBV receptors. Leuk Res 7: 389–395

    Article  CAS  PubMed  Google Scholar 

  100. Mufti GJ, Figes A, Hamblin TJ, Oscier DG, Copplestone JA (1986) Immunological abnormalities in myelodysplastic syndromes. I. Serum immunoglobulins and autoantibodies. Br J Haematol 63: 143–147

    Article  CAS  PubMed  Google Scholar 

  101. Marisavljevic D, Kraguljac N, Rolovic Z (2006) Immunologic abnormalities in myelodysplastic syndromes: clinical features and characteristics of the lymphoid population. Med Oncol 23: 385–392

    Article  CAS  PubMed  Google Scholar 

  102. Steensma DP, Gibbons RJ, Higgs DR (2005) Acquired alpha-thalassemia in association with myelodysplastic syndrome and other hematologic malignancies. Blood 105: 443–452

    Article  CAS  PubMed  Google Scholar 

  103. Tricot G, Wolf-Peeters C, Hendrickx B, Verwilghen RL (1984) Bone marrow histology in myelodysplastic syndromes. I. Histological findings in myelodysplastic syndromes and comparison with bone marrow smears. Br J Haematol 57: 423–430

    Article  CAS  PubMed  Google Scholar 

  104. Tricot G, Wolf-Peeters C, Vlietinck R, Verwilghen RL (1984) Bone marrow histology in myelodysplastic syndromes. II. Prognostic value of abnormal localization of immature precursors in MDS. Br J Haematol 58: 217–225

    Article  CAS  PubMed  Google Scholar 

  105. Mangi MH, Mufti GJ (1992) Primary myelodysplastic syndromes: diagnostic and prognostic significance of immunohistochemical assessment of bone marrow biopsies. Blood 79: 198–205

    CAS  PubMed  Google Scholar 

  106. Matsushima T, Handa H, Yokohama A et al. (2003) Prevalence and clinical characteristics of myelodysplastic syndrome with bone marrow eosinophilia or basophilia. Blood 101: 3386–3390

    Article  CAS  PubMed  Google Scholar 

  107. Rios A, Canizo MC, Sanz MA et al. (1990) Bone marrow biopsy in myelodysplastic syndromes: morphological characteristics and contribution to the study of prognostic factors. Br J Haematol 75: 26–33

    Article  CAS  PubMed  Google Scholar 

  108. Bennett JM, Catovsky D, Daniel MT et al. (1976) Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 33: 451–458

    Article  CAS  PubMed  Google Scholar 

  109. Bernasconi P, Klersy C, Boni M et al. (2007) World Health Organization classification in combination with cytogenetic markers improves the prognostic stratification of patients with de novo primary myelodysplastic syndromes. Br J Haematol 137: 193–205

    Article  CAS  PubMed  Google Scholar 

  110. Sole F, Luno E, Sanzo C et al. (2005) Identification of novel cytogenetic markers with prognostic significance in a series of 968 patients with primary myelodysplastic syndromes. Haematologica 90: 1168–1178

    CAS  PubMed  Google Scholar 

  111. Tiu R, Gondek L, O’Keefe C, Maciejewski JP (2007) Clonality of the stem cell compartment during evolution of myelodysplastic syndromes and other bone marrow failure syndromes. Leukemia 21: 1648–1657

    Article  CAS  PubMed  Google Scholar 

  112. Giagounidis AA, Germing U, Wainscoat JS, Boultwood J, Aul C (2004) The 5q− syndrome. Hematology. 9: 271–277

    Article  CAS  PubMed  Google Scholar 

  113. Tasaka T, Tohyama K, Kishimoto M et al. (2008) Myelodysplastic syndrome with chromosome 5 abnormalities: a nationwide survey in Japan. Leukemia 22: 1874–1881

    Article  CAS  PubMed  Google Scholar 

  114. Giagounidis AA, Germing U, Haase S et al. (2004) Clinical, morphological, cytogenetic, and prognostic features of patients with myelodysplastic syndromes and del(5q) including band q31. Leukemia 18: 113–119

    Article  CAS  PubMed  Google Scholar 

  115. Greenberg P, Cox C, LeBeau MM et al. (1997) International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89: 2079–2088

    CAS  PubMed  Google Scholar 

  116. Haase D, Germing U, Schanz J et al. (2007) Newinsights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood 110: 4385–4395

    Article  CAS  PubMed  Google Scholar 

  117. Cermak J, Michalova K, Brezinova J, Zemanova Z (2003) A prognostic impact of separation of refractory cytopenia with multilineage dysplasia and 5q− syndrome from refractory anemia in primary myelodysplastic syndrome. Leuk Res 27: 221–229

    Article  PubMed  Google Scholar 

  118. Hellstrom-Lindberg E (1995) Efficacy of erythropoietin in the myelodysplastic syndromes: a meta-analysis of 205 patients from 17 studies. Br J Haematol 89: 67–71

    CAS  PubMed  Google Scholar 

  119. Nimer SD (2006) Clinical management of myelodysplastic syndromes with interstitial deletion of chromosome 5q. J Clin Oncol 24: 2576–2582

    Article  CAS  PubMed  Google Scholar 

  120. Li JY, Xiao B, Chen LJ et al. (2008) An analysis of complex chromosomal aberrations in seven cases of myelodysplastic syndromes by M-FISH and whole chromosome painting. Int J Hematol 88: 369–373

    Article  PubMed  Google Scholar 

  121. Shih LY, Lin TL, Wang PN et al. (2004) Internal tandem duplication of fms-like tyrosine kinase 3 is associated with poor outcome in patients with myelodysplastic syndrome. Cancer 101: 989–998

    Article  CAS  PubMed  Google Scholar 

  122. de Souza FT, Menezes dS, Macedo Silva ML, Tabak D, Abdelhay E (1998) Correlation of N-ras point mutations with specific chromosomal abnormalities in primary myelodysplastic syndrome. Leuk Res 22: 125–134

    Article  Google Scholar 

  123. Padua RA, Guinn BA, Al Sabah AI et al. (1998) RAS, FMS and p53 mutations and poor clinical outcome in myelodysplasias: a 10-year follow-up. Leukemia 12: 887–892

    Article  CAS  PubMed  Google Scholar 

  124. Mitani K, Hangaishi A, Imamura N et al. (1997) No concomitant occurrence of the N-ras and p53 gene mutations in myelodysplastic syndromes. Leukemia 11: 863–865

    Article  CAS  PubMed  Google Scholar 

  125. Park IK, Qian D, Kiel M et al. (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423: 302–305

    Article  CAS  PubMed  Google Scholar 

  126. Dick JE (2003) Stem cells: self-renewal writ in blood. Nature 423: 231–233

    Article  CAS  PubMed  Google Scholar 

  127. Mihara K, Chowdhury M, Nakaju N et al. (2006) Bmi-1 is useful as a novel molecular marker for predicting progression of myelodysplastic syndrome and patient prognosis. Blood 107: 305–308

    Article  CAS  PubMed  Google Scholar 

  128. Niimi H, Harada H, Harada Y et al. (2006) Hyperactivation of the RAS signaling pathway in myelodysplastic syndrome with AML1/RUNX1 point mutations. Leukemia 20: 635–644

    Article  CAS  PubMed  Google Scholar 

  129. Vardiman JW, Harris NL, Brunning RD (2002) The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 100: 2292–2302

    Article  CAS  PubMed  Google Scholar 

  130. Pfeilstocker M, Reisner R, Nosslinger T et al. (1999) Crossvalidation of prognostic scores in myelodysplastic syndromes on 386 patients from a single institution confirms importance of cytogenetics. Br J Haematol 106: 455–463

    Article  CAS  PubMed  Google Scholar 

  131. Takahashi M, Takahashi H, Aizawa Y, Koike T (1998) Usefulness of IPSS for the patients with refractory anemia. Am J Hematol 58: 250–252

    Article  CAS  PubMed  Google Scholar 

  132. Muller-Berndorff H, Haas PS, Kunzmann R, Schulte-Monting J, Lubbert M (2006) Comparison of five prognostic scoring systems, the French-American-British (FAB) and World Health Organization (WHO) classifications in patients with myelodysplastic syndromes: results of a single-center analysis. Ann Hematol 85: 502–513

    Article  CAS  PubMed  Google Scholar 

  133. Maes B, Meeus P, Michaux L et al. (1999) Application of the International Prognostic Scoring System for myelodysplastic syndromes. Ann Oncol 10: 825–829

    Article  CAS  PubMed  Google Scholar 

  134. Park MJ, Kim HJ, Kim SH et al. (2008) Is International Prognostic Scoring System (IPSS) still standard in predicting prognosis in patients with myelodysplastic syndrome? External validation of the WHO Classification-Based Prognostic Scoring System (WPSS) and comparison with IPSS. Eur J Haematol 81: 364–373

    PubMed  Google Scholar 

  135. Malcovati L, Germing U, Kuendgen A et al. (2007) Timedependent prognostic scoring systemfor predicting survival and leukemic evolution in myelodysplastic syndromes. J Clin Oncol 25: 3503–3510

    Article  PubMed  Google Scholar 

  136. Breccia M, Cannella L, Stefanizzi C et al. (2009) WPSS versus simplified myelodysplastic syndrome risk score: which is the best tool for prediction of survival in myelodysplastic patients? Leuk Res 33(7): 393–394. Epub 2008

    Article  CAS  Google Scholar 

  137. Alessandrino EP, Della Porta MG, Bacigalupo A et al. (2008) WHO classification and WPSS predict posttransplantation outcome in patients with myelodysplastic syndrome: a study from the Gruppo Italiano Trapianto di Midollo Osseo (GITMO). Blood 112: 895–902

    Article  CAS  PubMed  Google Scholar 

  138. Verburgh E, Achten R, Maes B et al. (2003) Additional prognostic value of bone marrow histology in patients subclassified according to the International Prognostic Scoring System for myelodysplastic syndromes. J Clin Oncol 21: 273–282

    Article  CAS  PubMed  Google Scholar 

  139. Lorand-Metze I, Califani SM, Ribeiro E, Lima CS, Metze K (2008) The prognostic value of maturation-associated phenotypic abnormalities in myelodysplastic syndromes. Leuk Res 32: 211–213

    Article  CAS  PubMed  Google Scholar 

  140. van de Loosdrecht AA, Westers TM, Westra AH, Drager AM, van dVV, Ossenkoppele GJ (2008) Identification of distinct prognostic subgroups in low-and intermediate-1-risk myelodysplastic syndromes by flow cytometry. Blood 111: 1067–1077

    Article  PubMed  CAS  Google Scholar 

  141. Cannella L, Breccia M, Latagliata R, Frustaci A, Alimena G (2008) Clinical and prognostic features of patients with myelodysplastic/myeloproliferative syndrome categorized as unclassified (MDS/MPD-U) by WHO classification. Leuk Res 32: 514–516

    Article  PubMed  Google Scholar 

  142. Yang J, Wang C, Xie KC et al. (2006) Evaluation of the subsets of lymphocytes and their activated status in patients with myelodysplastic syndrome. Zhongguo Shi Yan Xue Ye Xue Za Zhi 14: 708–713

    PubMed  Google Scholar 

  143. Wang XL, Shao ZH, Yao C et al. (2005) Study of Th cell subsets in bone marrow of myelodysplastic syndromes patients. Zhonghua Xue Ye Xue Za Zhi 26: 743–745

    PubMed  Google Scholar 

  144. Okamoto T, Okada M, Mori A et al. (1997) Correlation between immunological abnormalities and prognosis in myelodysplastic syndrome patients. Int J Hematol 66: 345–351

    Article  CAS  PubMed  Google Scholar 

  145. Jansen AJ, Essink-Bot ML, Beckers EA, Hop WC, Schipperus MR, Van Rhenen DJ (2003) Quality of life measurement in patients with transfusion-dependent myelodysplastic syndromes. Br J Haematol 121: 270–274

    Article  CAS  PubMed  Google Scholar 

  146. Heptinstall K (2008) Quality of life in myelodysplastic syndromes. A special report from the Myelodysplastic Syndromes Foundation, Inc. Oncology (Williston Park) 22: 13–18

    Google Scholar 

  147. Hellstrom-Lindberg E, Malcovati L (2008) Supportive care and use of hematopoietic growth factors in myelodysplastic syndromes. Semin Hematol 45: 14–22

    Article  PubMed  CAS  Google Scholar 

  148. Clavio M, Nobili F, Balleari E et al. (2004) Quality of life and brain function following high-dose recombinant human erythropoietin in low-risk myelodysplastic syndromes: a preliminary report. Eur J Haematol 72: 113–120

    Article  CAS  PubMed  Google Scholar 

  149. Malcovati L, Porta MG, Pascutto C et al. (2005) Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria: a basis for clinical decision making. J Clin Oncol 23: 7594–7603

    Article  PubMed  Google Scholar 

  150. Oliva EN, Dimitrov BD, Benedetto F, D’Angelo A, Nobile F (2005) Hemoglobin level threshold for cardiac remodeling and quality of life in myelodysplastic syndrome. Leuk Res 29: 1217–1219

    Article  CAS  PubMed  Google Scholar 

  151. Rizzo JD, Somerfield MR, Hagerty KL et al. (2008) Use of epoetin and darbepoetin in patients with cancer: 2007 American Society of Clinical Oncology/American Society of Hematology clinical practice guideline update. J Clin Oncol 26: 132–149

    Article  CAS  PubMed  Google Scholar 

  152. Niazy MN, Neyyarapally TI, Chattopadhyay A (2008) Erythropoietin-induced deep vein thrombosis in myelodysplastic syndrome. J Assoc Phys India 56: 195–196

    CAS  Google Scholar 

  153. Chennuru S, Baumann MA (2007) Deep vein thrombosis occurring on treatment of patients receiving thalidomide with erythropoietin. Intern Med J 37: 506–507

    Article  CAS  PubMed  Google Scholar 

  154. Steurer M, Sudmeier I, Stauder R, Gastl G (2003) Thromboembolic events in patients with myelodysplastic syndrome receiving thalidomide in combination with darbepoietin-alpha. Br J Haematol 121: 101–103

    Article  CAS  PubMed  Google Scholar 

  155. Stein RS, Abels RI, Krantz SB (1991) Pharmacologic doses of recombinant human erythropoietin in the treatment of myelodysplastic syndromes. Blood 78: 1658–1663

    CAS  PubMed  Google Scholar 

  156. Ross SD, Allen IE, Probst CA, Sercus B, Crean SM, Ranganathan G (2007) Efficacy and safety of erythropoiesis-stimulating proteins in myelodysplastic syndrome: a systematic review and meta-analysis. Oncologist 12: 1264–1273

    Article  CAS  PubMed  Google Scholar 

  157. Moyo V, Lefebvre P, Duh MS, Yektashenas B, Mundle S (2008) Erythropoiesis-stimulating agents in the treatment of anemia in myelodysplastic syndromes: a meta-analysis. Ann Hematol 87: 527–536

    Article  CAS  PubMed  Google Scholar 

  158. Cheson BD, Greenberg PL, Bennett JM et al. (2006) Clinical application and proposal for modification of the International Working Group (IWG) response criteria in myelodysplasia. Blood 108: 419–425

    Article  CAS  PubMed  Google Scholar 

  159. Hellstrom-Lindberg E, Gulbrandsen N, Lindberg G et al. (2003) Avalidated decision model for treating the anaemia of myelodysplastic syndromes with erythropoietin + granulocyte colony-stimulating factor: significant effects on quality of life. Br J Haematol 120: 1037–1046

    Article  CAS  PubMed  Google Scholar 

  160. Jadersten M, Montgomery SM, Dybedal I, Porwit-MacDonald A, Hellstrom-Lindberg E (2005) Long-term outcome of treatment of anemia in MDS with erythropoietin and G-CSF. Blood 106: 803–811

    Article  PubMed  CAS  Google Scholar 

  161. Terpos E, Mougiou A, Kouraklis A et al. (2002) Prolonged administration of erythropoietin increases erythroid response rate in myelodysplastic syndromes: a phase II trial in 281 patients. Br J Haematol 118: 174–180

    Article  CAS  PubMed  Google Scholar 

  162. Tehranchi R, Fadeel B, Forsblom AM et al. (2003) Granulocyte colony-stimulating factor inhibits spontaneous cytochrome c release and mitochondria-dependent apoptosis of myelodysplastic syndrome hematopoietic progenitors. Blood 101: 1080–1086

    Article  CAS  PubMed  Google Scholar 

  163. Tehranchi R (2006) Impact of growth factors in the regulation of apoptosis in low-risk myelodysplastic syndromes. Med Oncol 23: 37–49

    Article  CAS  PubMed  Google Scholar 

  164. Tehranchi R, Fadeel B, Schmidt-Mende J et al. (2005) Antiapoptotic role of growth factors in the myelodysplastic syndromes: concordance between in vitro and in vivo observations. Clin Cancer Res 11: 6291–6299

    Article  CAS  PubMed  Google Scholar 

  165. Balleari E, Rossi E, Clavio M et al. (2006) Erythropoietin plus granulocyte colony-stimulating factor is better than erythropoietin alone to treat anemia in low-risk myelodysplastic syndromes: results from a randomized single-centre study. Ann Hematol 85: 174–180

    Article  CAS  PubMed  Google Scholar 

  166. Casadevall N, Durieux P, Dubois S et al. (2004) Health, economic, and quality-of-life effects of erythropoietin and granulocyte colony-stimulating factor for the treatment of myelodysplastic syndromes: a randomized, controlled trial. Blood 104: 321–327

    Article  CAS  PubMed  Google Scholar 

  167. Remacha AF, Arrizabalaga B, Villegas A et al. (1999) Erythropoietin plus granulocyte colony-stimulating factor in the treatment of myelodysplastic syndromes. Identification of a subgroup of responders. The Spanish Erythropathology Group. Haematologica 84: 1058–1064

    CAS  PubMed  Google Scholar 

  168. Hellstrom-Lindberg E, Ahlgren T, Beguin Y et al. (1998) Treatment of anemia in myelodysplastic syndromes with granulocyte colony-stimulating factor plus erythropoietin: results from a randomized phase II study and long-term follow-up of 71 patients. Blood 92: 68–75

    CAS  PubMed  Google Scholar 

  169. Gotlib J, Lavori P, Quesada S, Stein RS, Shahnia S, Greenberg PL (2009) A phase II intra-patient dose-escalation trial of weight-based darbepoetin alfa with or without granulocytecolony stimulating factor in myelodysplastic syndromes. Am J Hematol 84: 15–20

    Article  CAS  PubMed  Google Scholar 

  170. Jadersten M, Malcovati L, Dybedal I et al. (2008) Erythropoietin and granulocyte-colony stimulating factor treatment associated with improved survival in myelodysplastic syndrome. J Clin Oncol 26: 3607–3613

    Article  PubMed  Google Scholar 

  171. Park S, Grabar S, Kelaidi C et al. (2008) Predictive factors of response and survival in myelodysplastic syndrome treated with erythropoietin and G-CSF: the GFM experience. Blood 111: 574–582

    Article  CAS  PubMed  Google Scholar 

  172. Katz O, Gil L, Lifshitz L et al. (2007) Erythropoietin enhances immune responses in mice. Eur J Immunol 37: 1584–1593

    Article  CAS  PubMed  Google Scholar 

  173. Bowen D, Hyslop A, Keenan N et al. (2006) Predicting erythroid response to recombinant erythropoietin plus granulocyte colony-stimulating factor therapy following a single subcutaneous bolus in patients with myelodysplasia. Haematologica 91: 709–710

    PubMed  Google Scholar 

  174. Kuter DJ, Begley CG (2002) Recombinant human thrombopoietin: basic biology and evaluation of clinical studies. Blood 100: 3457–3469

    Article  CAS  PubMed  Google Scholar 

  175. Kaushansky K(1995) Thrombopoietin: the primary regulator of platelet production. Blood 86: 419–431

    CAS  PubMed  Google Scholar 

  176. Rasko JE, O’Flaherty E, Begley CG (1997) Mpl ligand (MGDF) alone and in combination with stem cell factor (SCF) promotes proliferation and survival of human megakaryocyte, erythroid and granulocyte/macrophage progenitors. Stem Cells 15: 33–42

    Article  CAS  PubMed  Google Scholar 

  177. Ku H, Yonemura Y, Kaushansky K, Ogawa M (1996) Thrombopoietin, the ligand for the Mpl receptor, synergizes with steel factor and other early acting cytokines in supporting proliferation of primitive hematopoietic progenitors of mice. Blood 87: 4544–4551

    CAS  PubMed  Google Scholar 

  178. Sitnicka E, Lin N, Priestley GV et al. (1996) The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells. Blood 87: 4998–5005

    CAS  PubMed  Google Scholar 

  179. Nichol JL (1998) Thrombopoietin levels after chemotherapy and in naturally occurring human diseases. Curr Opin Hematol 5: 203–208

    Article  CAS  PubMed  Google Scholar 

  180. Ogata K, Tamura H (2000) Thrombopoietin and myelodysplastic syndromes. Int J Hematol 72: 173–177

    CAS  PubMed  Google Scholar 

  181. Luo SS, Ogata K, Yokose N, Kato T, Dan K (2000) Effect of thrombopoietin on proliferation of blasts from patients with myelodysplastic syndromes. Stem Cells 18: 112–119

    Article  PubMed  Google Scholar 

  182. Fontenay-Roupie M, Dupont JM, Picard F et al. (1998) Analysis of megakaryocyte growth and development factor (thrombopoietin) effects on blast cell and megakaryocyte growth in myelodysplasia. Leuk Res 22: 527–535

    Article  CAS  PubMed  Google Scholar 

  183. Yagi M, Ritchie KA, Sitnicka E, Storey C, Roth GJ, Bartelmez S (1999) Sustained ex vivo expansion of hematopoietic stem cells mediated by thrombopoietin. Proc Natl Acad Sci USA 96: 8126–8131

    Article  CAS  PubMed  Google Scholar 

  184. Kizaki M, Miyakawa Y, Ikeda Y (2003) Long-term administration of pegylated recombinant human megakaryocyte growth and development factor dramatically improved cytopenias in a patient with myelodysplastic syndrome. Br J Haematol 122: 764–767

    Article  PubMed  Google Scholar 

  185. Li J, Yang C, Xia Y et al. (2001) Thrombocytopenia caused by the development of antibodies to thrombopoietin. Blood 98: 3241–3248

    Article  CAS  PubMed  Google Scholar 

  186. Basser RL, O’Flaherty E, Green M et al. (2002) Development of pancytopenia with neutralizing antibodies to thrombopoietin after multicycle chemotherapy supported by megakaryocyte growth and development factor. Blood 99: 2599–2602

    Article  CAS  PubMed  Google Scholar 

  187. Yang C, Xia Y, Li J, Kuter DJ (1999) The appearance of antithrombopoietin antibody and circulation thrombopoieitin-IgG complexes in a patient developing thrombocytopenia after injection of PEG-rHuMGDF. Blood 94: Abstract 681a

    Google Scholar 

  188. Dai XF, Yu J, Liu L, Wu G (2008) Value of recombinant human thrombopoietin in the treatment of chemotherapyinduced thrombocytopenia in patients with solid tumor. Zhonghua Zhong Liu Za Zhi 30: 623–625

    CAS  PubMed  Google Scholar 

  189. Xu YH, Chen ZW, Ye XY, Lu S (2008) Evaluation of recombinant human thrombopoietin in the treatment of chemotherapy-induced thrombocytopenia in lung cancer patients. Zhonghua Zhong Liu Za Zhi 30: 716–719

    CAS  PubMed  Google Scholar 

  190. Tiu RV, Sekeres MA (2008) The role of AMG-531 in the treatment of thrombocytopenia in idiopathic thrombocytopenic purpura and myelodysplastic syndromes. Expert Opin Biol Ther 8: 1021–1030

    Article  CAS  PubMed  Google Scholar 

  191. Jawa V, Hokom M, Hu J, Zhuang Y, Berger D, Gupta S, Swanson S, Chirmule N (2008) Low immunogenicity to romiplostim in clinical studies with ITP subjects. Blood 112: Abstract 3425

    Google Scholar 

  192. Kantarjian H, Giles F, Greenberg P, Paquette R, Wang E, Gabrilove J, Garcia-Manero G, Gray J, Hu K, Franklin J (2008) Effect of romiplostim in patients (pts) with low or intermediate risk myelodysplastic syndrome (MDS) receiving azacytidine. Blood 112: Abstract 224

    Google Scholar 

  193. Bussel JB, Provan D, Shamsi T et al. (2009) Effect of eltrombopag on platelet counts and bleeding during treatment of chronic idiopathic thrombocytopenic purpura: a randomised, double-blind, placebo-controlled trial. Lancet 373: 641–648

    Article  CAS  PubMed  Google Scholar 

  194. Cheng G, Saleh MN, Bussel JB, Marcher C, Vasey S, Mayer B, Aivado M, Arning M, Stone NL (2008) Oral eltrombopag for the long-term treatment of patients with chronic idiopathic thrombocytopenic purpura: results of a phase III, doubleblind, placebo-controlled study (RAISE). Blood 112: Abstract 408

    Google Scholar 

  195. Rodeghiero F, Ruggeri M (2009) Chronic immune thrombocytopenic purpura. New agents. Hamostaseologie 29: 76–79

    CAS  PubMed  Google Scholar 

  196. Fukushima-Shintani M, Suzuki KI, Iwatsuki Y et al. (2009) AKR-501 (YM477) a novel orally-active thrombopoietin receptor agonist. Eur J Haematol 82(4): 247–254

    Article  CAS  PubMed  Google Scholar 

  197. Desjardins RE, Tempel DL, Lucek R, Kuter DJ (2006) Single and multiple oral doses of AKR-501 (YM477) increase the platelet count in healthy volunteers. Blood 108: Abstract 417

    Google Scholar 

  198. Guan M, Chen SC, Li RS, Ge CW, Zhu HL (2004) Low dose all-trans retinoic acid and androgen therapy for patients with myelodysplastic syndrome. Zhongguo Shi Yan Xue Ye Xue Za Zhi 12: 774–778

    CAS  PubMed  Google Scholar 

  199. Chan G, DiVenuti G, Miller K (2002) Danazol for the treatment of thrombocytopenia in patients with myelodysplastic syndrome. Am J Hematol 71: 166–171

    Article  CAS  PubMed  Google Scholar 

  200. Sadek I, Zayed E, Hayne O, Fernandez L (2000) Prolonged complete remission of myelodysplastic syndrome treated with danazol, retinoic acid and low-dose prednisone. Am J Hematol 64: 306–310

    Article  CAS  PubMed  Google Scholar 

  201. Chabannon C, Molina L, Pegourie-Bandelier B, Bost M, Leger J, Hollard D (1994) A review of 76 patients with myelodysplastic syndromes treated with danazol. Cancer 73: 3073–3080

    Article  CAS  PubMed  Google Scholar 

  202. Wattel E, Cambier N, Caulier MT, Sautiere D, Bauters F, Fenaux P (1994) Androgen therapy in myelodysplastic syndromes with thrombocytopenia: a report on 20 cases. Br J Haematol 87: 205–208

    Article  CAS  PubMed  Google Scholar 

  203. Aviles A, Rubio ME, Gomez J, Medina ML, Gonzalez-Llaven J (1989) Randomized study of danazol vs. placebo in myelodysplastic syndromes. Arch Invest Med (Mex) 20: 183–188

    CAS  Google Scholar 

  204. Marini B, Bassan R, Barbui T (1988) Therapeutic efficacy of danazol in myelodysplastic syndromes. Eur J Cancer Clin Oncol 24: 1481–1489

    Article  CAS  PubMed  Google Scholar 

  205. Buzaid AC, Garewal HS, Lippman SM, Durie BG, Katakkar SB, Greenberg BR (1987) Danazol in the treatment of myelodysplastic syndromes. Eur J Haematol 39: 346–348

    CAS  PubMed  Google Scholar 

  206. Esposito BP, Breuer W, Sirankapracha P, Pootrakul P, Hershko C, Cabantchik ZI (2003) Labile plasma iron in iron overload: redox activity and susceptibility to chelation. Blood 102: 2670–2677

    Article  CAS  PubMed  Google Scholar 

  207. Takatoku M, Uchiyama T, Okamoto S et al. (2007) Retrospective nationwide survey of Japanese patients with transfusion-dependent MDS and aplastic anemia highlights the negative impact of iron overload on morbidity/mortality. Eur J Haematol 78: 487–494

    Article  CAS  PubMed  Google Scholar 

  208. Schafer AI, Cheron RG, Dluhy R et al. (1981) Clinical consequences of acquired transfusional iron overload in adults. N Engl J Med 304: 319–324

    CAS  PubMed  Google Scholar 

  209. Buja LM, Roberts WC (1971) Iron in the heart. Etiology and clinical significance. Am J Med 51: 209–221

    Article  CAS  PubMed  Google Scholar 

  210. Cazzola M, Malcovati L (2005) Myelodysplastic syndromes — coping with ineffective hematopoiesis. N Engl J Med 352: 536–538

    Article  CAS  PubMed  Google Scholar 

  211. Della Porta MG, Malcovati L, Travaglino E, Pascutto C, Maffioli M, Invernizzi R, Cazzola MA (2007) Prognostic model for opredicting the impact of comorbidities on survival of patients with myelodysplastic syndromes. Blood 110: Abstract 2453

    Google Scholar 

  212. Brittenham GM, Griffith PM, Nienhuis AW et al. (1994) Efficacy of deferoxamine in preventing complications of iron overload in patients with thalassemia major. N Engl J Med 331: 567–573

    Article  CAS  PubMed  Google Scholar 

  213. Gabutti V, Piga A (1996) Results of long-term iron-chelating therapy. Acta Haematol 95: 26–36

    Article  CAS  PubMed  Google Scholar 

  214. Glanville J, Eleftheriou P, Porter J (2006) MRI evidence of cardiac iron accumulation in myelodysplasia and unusual anaemias. Blood 108: Abstract 1553

    Google Scholar 

  215. Gattermann N (2007) Guidelines on iron chelation therapy in patients with myelodysplastic syndromes and transfusional iron overload. Leuk Res 31(Suppl 3): S10–S15

    Article  CAS  PubMed  Google Scholar 

  216. Jensen PD, Heickendorff L, Pedersen B et al. (1996) The effect of iron chelation on haemopoiesis in MDS patients with transfusional iron overload. Br J Haematol 94: 288–299

    Article  CAS  PubMed  Google Scholar 

  217. Bennett JM (2008) Consensus statement on iron overload in myelodysplastic syndromes. Am J Hematol 83: 858–861

    Article  PubMed  Google Scholar 

  218. Gattermann N (2008) Overview of guidelines on iron chelation therapy in patients with myelodysplastic syndromes and transfusional iron overload. Int J Hematol 88: 24–29

    Article  PubMed  Google Scholar 

  219. Alessandrino EP, Amadori S, Barosi G et al. (2002) Evidenceand consensus-based practice guidelines for the therapy of primary myelodysplastic syndromes. A statement from the Italian Society of Hematology. Haematologica 87: 1286–1306

    PubMed  Google Scholar 

  220. Bowen D, Culligan D, Jowitt S et al. (2003) Guidelines for the diagnosis and therapy of adult myelodysplastic syndromes. Br J Haematol 120: 187–200

    Article  PubMed  Google Scholar 

  221. Miceli MH, Dong L, Grazziutti ML et al. (2006) Iron overload is a major risk factor for severe infection after autologous stem cell transplantation: a study of 367 myeloma patients. Bone Marrow Transplant 37: 857–864

    Article  CAS  PubMed  Google Scholar 

  222. Armand P, Kim HT, Cutler CS et al. (2007) Prognostic impact of elevated pretransplantation serum ferritin in patients undergoing myeloablative stem cell transplantation. Blood 109: 4586–4588

    Article  CAS  PubMed  Google Scholar 

  223. Altes A, Remacha AF, Sarda P et al. (2004) Frequent severe liver iron overload after stem cell transplantation and its possible association with invasive aspergillosis. Bone Marrow Transplant 34: 505–509

    Article  CAS  PubMed  Google Scholar 

  224. Altes A, Remacha AF, Sarda P et al. (2007) Early clinical impact of iron overload in stem cell transplantation. A prospective study. Ann Hematol 86: 443–447

    Article  PubMed  Google Scholar 

  225. Maggio A (2007) Light and shadows in the iron chelation treatment of haematological diseases. Br J Haematol 138: 407–421

    Article  CAS  PubMed  Google Scholar 

  226. Kontoghiorghes GJ, Bartlett AN, Sheppard L, Barr J, Nortey P (1995) Oral iron chelation therapy with deferiprone. Monitoring of biochemical, drug and iron excretion changes. Arzneimittelforschung 45: 65–69

    CAS  PubMed  Google Scholar 

  227. Cermak J (2006) Erythropoietin administration may potentiate mobilization of storage iron in patients on oral iron chelation therapy. Hemoglobin 30: 105–112

    Article  CAS  PubMed  Google Scholar 

  228. Olivieri NF, Brittenham GM (1997) Iron-chelating therapy and the treatment of thalassemia. Blood 89: 739–761

    CAS  PubMed  Google Scholar 

  229. Leitch HA, Goodman TA, Wong KK, Vickars LM, Galbraith PF, Leger CS (2009) Improved survival in patients with myelodysplastic syndrome (MDS) receiving iron chelation therapy. Blood 108: Abstract 249

    Google Scholar 

  230. Cappellini MD, Cohen A, Piga A et al. (2006)Aphase 3 study of deferasirox (ICL670), a once-daily oral iron chelator, in patients with beta-thalassemia. Blood 107: 3455–3462

    Article  CAS  PubMed  Google Scholar 

  231. Vichinsky E, Onyekwere O, Porter J et al. (2007) A randomised comparison of deferasirox versus deferoxamine for the treatment of transfusional iron overload in sickle cell disease. Br J Haematol 136: 501–508

    Article  CAS  PubMed  Google Scholar 

  232. Porter J, Galanello R, Saglio G et al. (2008) Relative response of patients with myelodysplastic syndromes and other transfusion-dependent anaemias to deferasirox (ICL670): a 1-year prospective study. Eur J Haematol 80: 168–176

    CAS  PubMed  Google Scholar 

  233. Metzgeroth G, Dinter D, Schultheis B et al. (2009) Deferasirox in MDS patients with transfusion-caused iron overload — a phase-II study. Ann Hematol 88: 301–310

    Article  CAS  PubMed  Google Scholar 

  234. Cappellini MD, Bejaoui M, Agaoglu L et al. (2007) Prospective evaluation of patient-reported outcomes during treatment with deferasirox or deferoxamine for iron overload in patients with beta-thalassemia. Clin Ther 29: 909–917

    Article  CAS  PubMed  Google Scholar 

  235. Cappellini MD (2008) Long-term efficacy and safety of deferasirox. Blood Rev 22(Suppl 2): S35–S41

    Article  CAS  PubMed  Google Scholar 

  236. Messa E, Cilloni D, Messa F, Arruga F, Roetto A, Saglio G (2008) Deferasirox treatment improved the hemoglobin level and decreased transfusion requirements in four patients with the myelodysplastic syndrome and primary myelofibrosis. Acta Haematol 120: 70–74

    Article  CAS  PubMed  Google Scholar 

  237. Omoto E, Deguchi S, Takaba S et al. (1996) Low-dose melphalan for treatment of high-risk myelodysplastic syndromes. Leukemia 10: 609–614

    CAS  PubMed  Google Scholar 

  238. Robak T, Szmigielska-Kaplon A, Urbanska-Rys H, Chojnowski K, Wrzesien-Kus A (2003) Efficacy and toxicity of low-dose melphalan in myelodysplastic syndromes and acute myeloid leukemia with multilineage dysplasia. Neoplasma 50: 172–175

    CAS  PubMed  Google Scholar 

  239. Anargyrou K, Vaiopoulos G, Terpos E et al. (2002) Low dose melphalan is a treatment option in elderly patients with high risk myelodysplastic syndrome or secondary acute myeloblastic leukaemia. Haematologia (Budap) 32: 169–173

    Article  Google Scholar 

  240. Ontachi Y, Yamauchi H, Takami A, Asakura H, Nakao S (2001) Low dose melphalan therapy was effective in an elderly patient with MDS-AML. Nippon Ronen Igakkai Zasshi 38: 405–408

    CAS  PubMed  Google Scholar 

  241. Gerhartz HH, Marcus R, Delmer A et al. (1992) Treatment of myelodysplastic syndromes (MDS) and high leukaemic risk with low-dose cytosine arabinoside (LD-AraC) plus granulocyte-macrophage colony-stimulating factor (rh GM-CSF). The EORTC Leukaemia Group. Infection 20(Suppl 2): S116–S123

    Article  PubMed  Google Scholar 

  242. Zwierzina H, Suciu S, Loeffler-Ragg J et al. (2005) Low-dose cytosine arabinoside (LD-AraC) vs. LD-AraC plus granulocyte/macrophage colony stimulating factor vs LD-AraC plus Interleukin-3 for myelodysplastic syndrome patients with a high risk of developing acute leukemia: final results of a randomized phase III study (06903) of the EORTC Leukemia Cooperative Group. Leukemia 19: 1929–1933

    Article  CAS  PubMed  Google Scholar 

  243. Rossi HA, O’Donnell J, Sarcinelli F, Stewart FM, Quesenberry PJ, Becker PS (2002) Granulocyte-macrophage colony-stimulating factor (GM-CSF) priming with successive concomitant low-dose Ara-C for elderly patients with secondary/refractory acute myeloid leukemia or advanced myelodysplastic syndrome. Leukemia 16: 310–315

    Article  CAS  PubMed  Google Scholar 

  244. Fenaux P, Mufti GJ, Hellstrom-Lindberg E et al. (2009) Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 16(3): 223–231

    Article  CAS  Google Scholar 

  245. Runde V, de Witte T, Arnold R et al. (1998) Bone marrow transplantation from HLA-identical siblings as first-line treatment in patients with myelodysplastic syndromes: early transplantation is associated with improved outcome. Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Bone MarrowTransplant 21: 255–261

    Article  CAS  Google Scholar 

  246. Sierra J, Perez WS, Rozman C et al. (2002) Bone marrow transplantation from HLA-identical siblings as treatment for myelodysplasia. Blood 100: 1997–2004

    CAS  PubMed  Google Scholar 

  247. de Witte T, Hermans J, Vossen J et al. (2000) Haematopoietic stem cell transplantation for patients with myelo-dysplastic syndromes and secondary acute myeloid leukaemias: a report on behalf of the Chronic Leukaemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT). Br J Haematol 110: 620–630

    Article  PubMed  Google Scholar 

  248. Nevill TJ, Shepherd JD, Sutherland HJ et al. (2009) IPSS poor-risk karyotype as a predictor of outcome for patients with myelodysplastic syndrome following myeloablative stem cell transplantation. Biol Blood Marrow Transplant 15: 205–213

    Article  PubMed  Google Scholar 

  249. Shimoni A, Hardan I, Shem-Tov N et al. (2006) Allogeneic hematopoietic stem-cell transplantation in AML and MDS using myeloablative versus reduced-intensity conditioning: the role of dose intensity. Leukemia 20: 322–328

    Article  CAS  PubMed  Google Scholar 

  250. de Lima M, Couriel D, Thall PF et al. (2004) Once-daily intravenous busulfan and fludarabine: clinical and pharmacokinetic results of a myeloablative, reduced-toxicity conditioning regimen for allogeneic stem cell transplantation in AML and MDS. Blood 104: 857–864

    Article  PubMed  CAS  Google Scholar 

  251. Valcarcel D, Martino R, Sureda A et al. (2005) Conventional versus reduced-intensity conditioning regimen for allogeneic stem cell transplantation in patients with hematological malignancies. Eur J Haematol 74: 144–151

    Article  CAS  PubMed  Google Scholar 

  252. Deeg HJ (2005) Optimization of Transplant Regimens for Patients with myelodysplastic syndrome (MDS). Hematology. Am Soc Hematol Educ Program 167–173

    Google Scholar 

  253. Cutler CS, Lee SJ, Greenberg P et al. (2004) A decision analysis of allogeneic bone marrow transplantation for the myelodysplastic syndromes: delayed transplantation for lowrisk myelodysplasia is associated with improved outcome. Blood 104: 579–585

    Article  CAS  PubMed  Google Scholar 

  254. Finke J, Nagler A (2007) Viewpoint: What is the role of allogeneic haematopoietic cell transplantation in the era of reduced-intensity conditioning — is there still an upper age limit? A focus on myeloid neoplasia. Leukemia 21: 1357–1362

    Article  CAS  PubMed  Google Scholar 

  255. Barrett AJ, Savani BN (2008) Allogeneic stem cell transplantation for myelodysplastic syndrome. Semin Hematol 45: 49–59

    Article  CAS  PubMed  Google Scholar 

  256. Oliansky DM, Antin JH, Bennett JM et al. (2009) The role of cytotoxic therapy with hematopoietic stem cell transplantation in the therapy of myelodysplastic syndromes: an evidencebased review. Biol Blood Marrow Transplant 15: 137–172

    Article  PubMed  Google Scholar 

  257. Anderson JE, Appelbaum FR, Schoch G et al. (1996) Allogeneic marrow transplantation for refractory anemia: a comparison of two preparative regimens and analysis of prognostic factors. Blood 87: 51–58

    CAS  PubMed  Google Scholar 

  258. de Witte T, Suciu S, Peetermans M et al. (1995) Intensive chemotherapy for poor prognosis myelodysplasia (MDS) and secondary acute myeloid leukemia (sAML) following MDS of more than 6 months duration. A pilot study by the Leukemia Cooperative Group of the European Organisation for Research and Treatment in Cancer (EORTC-LCG). Leukemia 9: 1805–1811

    PubMed  Google Scholar 

  259. Appelbaum FR, Barrall J, Storb R et al. (1990) Bone marrow transplantation for patients with myelodysplasia. Pretreatment variables and outcome. Ann Intern Med 112: 590–597

    CAS  PubMed  Google Scholar 

  260. Armand P, Kim HT, DeAngelo DJ et al. (2007) Impact of cytogenetics on outcome of de novo and therapy-related AML and MDS after allogeneic transplantation. Biol Blood Marrow Transplant 13: 655–664

    Article  CAS  PubMed  Google Scholar 

  261. van der Straaten HM, van Biezen A, Brand R et al. (2005) Allogeneic stem cell transplantation for patients with acute myeloid leukemia or myelodysplastic syndrome who have chromosome 5 and/or 7 abnormalities. Haematologica 90: 1339–1345

    PubMed  Google Scholar 

  262. Armand P, Kim HT, Cutler CS et al. (2008) Aprognostic score for patients with acute leukemia or myelodysplastic syndromes undergoing allogeneic stem cell transplantation. Biol Blood Marrow Transplant 14: 28–35

    Article  CAS  PubMed  Google Scholar 

  263. Guardiola P, Runde V, Bacigalupo A et al. (2002) Retrospective comparison of bone marrow and granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells for allogeneic stem cell transplantation using HLA identical sibling donors in myelodysplastic syndromes. Blood 99: 4370–4378

    Article  CAS  PubMed  Google Scholar 

  264. Deeg HJ, Storer B, Slattery JT et al. (2002) Conditioning with targeted busulfan and cyclophosphamide for hemopoietic stem cell transplantation from related and unrelated donors in patients with myelodysplastic syndrome. Blood 100: 1201–1207

    Article  CAS  PubMed  Google Scholar 

  265. Deeg HJ, Appelbaum FR, Storer B (2004) Reduced incidence of acute and chronic graft-versus-host disease (GvHD) without increased relapse in patients with high-risk myeloid disorders given thymoglobulin (THY) as part of the transplant conditioning regimen: a dose finding study. Blood 104 (part1): 56a

    Google Scholar 

  266. Koh LP, Chao NJ (2004) Umbilical cord blood transplantation in adults using myeloablative and nonmyeloablative preparative regimens. Biol Blood Marrow Transplant 10: 1–22

    Article  PubMed  Google Scholar 

  267. Barker JN, Weisdorf DJ, DeFor TE et al. (2005) Transplantation of 2 partially HLA-matched umbilical cord blood units to enhance engraftment in adults with hematologic malignancy. Blood 105: 1343–1347

    Article  CAS  PubMed  Google Scholar 

  268. Laport GG, Sandmaier BM, Storer BE et al. (2008) Reducedintensity conditioning followed by allogeneic hematopoietic cell transplantation for adult patients with myelodysplastic syndrome and myeloproliferative disorders. Biol Blood Marrow Transplant 14: 246–255

    Article  PubMed  Google Scholar 

  269. Warlick ED, Cioc A, Defor T, Dolan M, Weisdorf D (2009) Allogeneic stem cell transplantation for adults with myelodysplastic syndromes: importance of pretransplant disease burden. Biol Blood Marrow Transplant 15: 30–38

    Article  PubMed  Google Scholar 

  270. Martino R, Iacobelli S, Brand R et al. (2006) Retrospective comparison of reduced-intensity conditioning and conventional high-dose conditioning for allogeneic hematopoietic stem cell transplantation using HLA-identical sibling donors in myelodysplastic syndromes. Blood 108: 836–846

    Article  CAS  PubMed  Google Scholar 

  271. Lim ZY, Ho AY, Ingram W et al. (2006) Outcomes of alemtuzumab-based reduced intensity conditioning stem cell transplantation using unrelated donors for myelodysplastic syndromes. Br J Haematol 135: 201–209

    Article  PubMed  Google Scholar 

  272. Tauro S, Craddock C, Peggs K et al. (2005) Allogeneic stemcell transplantation using a reduced-intensity conditioning regimen has the capacity to produce durable remissions and long-term disease-free survival in patients with high-risk acute myeloid leukemia and myelodysplasia. J Clin Oncol 23: 9387–9393

    Article  CAS  PubMed  Google Scholar 

  273. Campregher PV, Gooley T, Scott BL et al. (2007) Results of donor lymphocyte infusions for relapsed myelodysplastic syndrome after hematopoietic cell transplantation. Bone Marrow Transplant 40: 965–971

    Article  CAS  PubMed  Google Scholar 

  274. Schmid C, Schleuning M, Ledderose G, Tischer J, Kolb HJ (2005) Sequential regimen of chemotherapy, reduced-intensity conditioning for allogeneic stem-cell transplantation, and prophylactic donor lymphocyte transfusion in high-risk acute myeloid leukemia and myelodysplastic syndrome. J Clin Oncol 23: 5675–5687

    Article  PubMed  Google Scholar 

  275. Valcarcel D, Martino R, Caballero D et al. (2008) Sustained remissions of high-risk acute myeloid leukemia and myelodysplastic syndrome after reduced-intensity conditioning allogeneic hematopoietic transplantation: chronic graft-versushost disease is the strongest factor improving survival. J Clin Oncol 26: 577–584

    Article  CAS  PubMed  Google Scholar 

  276. Chae YS, Sohn SK, Kim JG et al. (2008) Impact of alemtuzumab as conditioning regimen component on transplantation outcomes in case of CMV-seropositive recipients and donors. Am J Hematol 83: 649–653

    Article  CAS  PubMed  Google Scholar 

  277. Song WK, Min YH, Kim YR, Lee SC (2008) Cytomegalovirus retinitis after hematopoietic stem cell transplantation with alemtuzumab. Ophthalmology 115: 1766–1770

    Article  PubMed  Google Scholar 

  278. Bainton RD, Byrne JL, Davy BJ, Russell NH (2002) CMV infection following nonmyeloablative allogeneic stem cell transplantation using Campath. Blood 100: 3843–3844

    Article  PubMed  Google Scholar 

  279. Ditschkowski M, Elmaagacli AH, Trenschel R, Steckel NK, Koldehoff M, Beelen DW (2006) Myeloablative allogeneic hematopoietic stem cell transplantation in elderly patients. Clin Transplant 20: 127–131

    Article  CAS  PubMed  Google Scholar 

  280. Hegenbart U, Niederwieser D, Sandmaier BM et al. (2006) Treatment for acute myelogenous leukemia by low-dose, total-body, irradiation-based conditioning and hematopoietic cell transplantation from related and unrelated donors. J Clin Oncol 24: 444–453

    Article  CAS  PubMed  Google Scholar 

  281. Spyridonidis A, Bertz H, Ihorst G, Grullich C, Finke J (2005) Hematopoietic cell transplantation from unrelated donors as an effective therapy for older patients (≥60 years) with active myeloid malignancies. Blood 105: 4147–4148

    Article  CAS  PubMed  Google Scholar 

  282. Eapen M, Giralt SA, Horowitz MM et al. (2004) Second transplant for acute and chronic leukemia relapsing after first HLA-identical sibling transplant. Bone Marrow Transplant 34: 721–727

    Article  CAS  PubMed  Google Scholar 

  283. van Besien K, Artz A, Smith S et al. (2005) Fludarabine, melphalan, and alemtuzumab conditioning in adults with standard-risk advanced acute myeloid leukemia and myelodysplastic syndrome. J Clin Oncol 23: 5728–5738

    Article  PubMed  CAS  Google Scholar 

  284. Wong R, Giralt SA, Martin T et al. (2003) Reducedintensity conditioning for unrelated donor hematopoietic stem cell transplantation as treatment for myeloid malignancies in patients older than 55 years. Blood 102: 3052–3059

    Article  CAS  PubMed  Google Scholar 

  285. de Lima M, Anagnostopoulos A, Munsell M et al. (2004) Nonablative versus reduced-intensity conditioning regimens in the treatment of acute myeloid leukemia and high-risk myelodysplastic syndrome: dose is relevant for long-term disease control after allogeneic hematopoietic stem cell transplantation. Blood 104: 865–872

    Article  PubMed  CAS  Google Scholar 

  286. Alyea EP, Kim HT, Ho V et al. (2005) Comparative outcome of nonmyeloablative and myeloablative allogeneic hematopoietic cell transplantation for patients older than 50 years of age. Blood 105: 1810–1814

    Article  CAS  PubMed  Google Scholar 

  287. Storb R, Yu C, Barnett T et al. (1999) Stable mixed hematopoietic chimerism in dog leukocyte antigen-identical littermate dogs given lymph node irradiation before and pharmacologic immunosuppression after marrow transplantation. Blood 94: 1131–1136

    CAS  PubMed  Google Scholar 

  288. Baron F, Maris MB, Sandmaier BM et al. (2005) Graftversus-tumor effects after allogeneic hematopoietic cell transplantation with nonmyeloablative conditioning. J Clin Oncol 23: 1993–2003

    Article  PubMed  Google Scholar 

  289. Porter DL, Antin JH (2006) Donor leukocyte infusions in myeloid malignancies: new strategies. Best Pract Res Clin Haematol 19: 737–755

    Article  CAS  PubMed  Google Scholar 

  290. Schleuning M, Schmid C, Ledderose G (2004) Durable remission after prophylactic donor lymphocyte transfusion following allogeneic stem cell transplantation with reduced conditioning for high-riskAMLand MDS. Blood 104(part 1): 89a

    Google Scholar 

  291. Pollyea DA, Artz AS, Stock W et al. (2007) Outcomes of patients with AML and MDS who relapse or progress after reduced intensity allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 40: 1027–1032

    Article  CAS  PubMed  Google Scholar 

  292. de Lima M, Bonamino M, Vasconcelos Z et al. (2001) Prophylactic donor lymphocyte infusions after moderately ablative chemotherapy and stem cell transplantation for hematological malignancies: high remission rate among poor prognosis patients at the expense of graft-versus-host disease. Bone Marrow Transplant 27: 73–78

    Article  PubMed  Google Scholar 

  293. Onodera M (2008) Gene and cell therapy for relapsed leukemia after allo-stem cell transplantation. Front Biosci 13: 3408–3414

    Article  CAS  PubMed  Google Scholar 

  294. Fenaux P, Morel P, Rose C, Lai JL, Jouet JP, Bauters F (1991) Prognostic factors in adult de novo myelodysplastic syndromes treated by intensive chemotherapy. Br J Haematol 77: 497–501

    CAS  PubMed  Google Scholar 

  295. Estey E, de Lima M, Tibes R et al. (2007) Prospective feasibility analysis of reduced-intensity conditioning (RIC) regimens for hematopoietic stem cell transplantation (HSCT) in elderly patients with acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (MDS). Blood 109: 1395–1400

    Article  CAS  PubMed  Google Scholar 

  296. Kantarjian H, Beran M, Cortes J et al. (2006) Long-term follow-up results of the combination of topotecan and cytarabine and other intensive chemotherapy regimens in myelodysplastic syndrome. Cancer 106: 1099–1109

    Article  CAS  PubMed  Google Scholar 

  297. Delforge M, Demuynck H, Vandenberghe P et al. (1995) Polyclonal primitive hematopoietic progenitors can be detected in mobilized peripheral blood from patients with highrisk myelodysplastic syndromes. Blood 86: 3660–3667

    CAS  PubMed  Google Scholar 

  298. Demuynck H, Delforge M, Verhoef GE et al. (1996) Feasibility of peripheral blood progenitor cell harvest and transplantation in patients with poor-risk myelodysplastic syndromes. Br J Haematol 92: 351–359

    Article  CAS  PubMed  Google Scholar 

  299. Wattel E, Solary E, Leleu X et al. (1999) A prospective study of autologous bone marrow or peripheral blood stem cell transplantation after intensive chemotherapy in myelodysplastic syndromes. Groupe Francais des Myelodysplasies. Group Ouest-Est d’etude des Leucemies aigues myeloides. Leukemia 13: 524–529

    Article  CAS  PubMed  Google Scholar 

  300. deWitte T, van Biezen A, Hermans J et al. (1997) Autologous bone marrow transplantation for patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia following MDS. Chronic and Acute Leukemia Working Parties of the European Group for Blood and Marrow Transplantation. Blood 90: 3853–3857

    CAS  Google Scholar 

  301. Lazarus HM, Perez WS, Klein JP et al. (2006) Autotransplantation versus HLA-matched unrelated donor transplantation for acute myeloid leukaemia: a retrospective analysis from the Center for International Blood and Marrow Transplant Research. Br J Haematol 132: 755–769

    Article  PubMed  Google Scholar 

  302. Oosterveld M, Suciu S, Verhoef G et al. (2003) The presence of an HLA-identical sibling donor has no impact on outcome of patients with high-risk MDS or secondary AML (sAML) treated with intensive chemotherapy followed by transplantation: results of a prospective study of the EORTC, EBMT, SAKK and GIMEMA Leukemia Groups (EORTC study 06921). Leukemia 17: 859–868

    Article  CAS  PubMed  Google Scholar 

  303. Oosterveld M, Muus P, Suciu S et al. (2002) Chemotherapy only compared to chemotherapy followed by transplantation in high risk myelodysplastic syndrome and secondary acute myeloid leukemia; two parallel studies adjusted for various prognostic factors. Leukemia 16: 1615–1621

    Article  CAS  PubMed  Google Scholar 

  304. Daskalakis M, Nguyen TT, Nguyen C et al. (2002) Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-20-deoxycytidine (decitabine) treatment. Blood 100: 2957–2964

    Article  CAS  PubMed  Google Scholar 

  305. Rosu-Myles M, Wolff L (2008) p15Ink4b: dual function in myelopoiesis and inactivation in myeloid disease. Blood Cells Mol Dis 40: 406–409

    Article  CAS  PubMed  Google Scholar 

  306. Aggerholm A, Holm MS, Guldberg P, Olesen LH, Hokland P (2006) Promoter hypermethylation of p15INK4B, HIC1, CDH1, and ER is frequent in myelodysplastic syndrome and predicts poor prognosis in early-stage patients. Eur J Haematol 76: 23–32

    Article  CAS  PubMed  Google Scholar 

  307. Quesnel B, Fenaux P (1999) P15INK4b gene methylation and myelodysplastic syndromes. Leuk Lymphoma 35: 437–443

    Article  CAS  PubMed  Google Scholar 

  308. Aoki E, Uchida T, Ohashi H et al. (2000) Methylation status of the p15INK4B gene in hematopoietic progenitors and peripheral blood cells in myelodysplastic syndromes. Leukemia 14: 586–593

    Article  CAS  PubMed  Google Scholar 

  309. Uchida T, Kinoshita T, Hotta T, Murate T (1998) High-risk myelodysplastic syndromes and hypermethylation of the p15Ink4B gene. Leuk Lymphoma 32: 9–18

    CAS  PubMed  Google Scholar 

  310. Tien HF, Tang JH, Tsay W et al. (2001) Methylation of the p15 (INK4B) gene in myelodysplastic syndrome: it can be detected early at diagnosis or during disease progression and is highly associated with leukaemic transformation. Br J Haematol 112: 148–154

    Article  CAS  PubMed  Google Scholar 

  311. Ye XS, Liu T, Cui X, Meng WT, Xi YM (2007) Methylation of P15INK4B gene in patients with myelodysplastic syndromes and demethylating effects of drugs. Sichuan Da Xue Xue Bao Yi Xue Ban 38: 57–59

    CAS  PubMed  Google Scholar 

  312. Ren L, Du H, Zhu Q, Shi Y, Chen H, Wu S (2002) The reexpression of p15(INK4B) gene in leukemia cells induced by in vitro DNA methyltransferase and histone deacetylase inhibition. Zhonghua Nei Ke Za Zhi 41: 762–765

    CAS  PubMed  Google Scholar 

  313. Silverman LR, Mufti GJ (2005) Methylation inhibitor therapy in the treatment of myelodysplastic syndrome. Nat Clin Pract Oncol 2(Suppl 1): S12–S23

    Article  CAS  PubMed  Google Scholar 

  314. Jones PA, Taylor SM (1980) Cellular differentiation, cytidine analogs and DNA methylation. Cell 20: 85–93

    Article  CAS  PubMed  Google Scholar 

  315. Issa JP (2003) Decitabine. Curr Opin Oncol 15: 446–451

    Article  CAS  PubMed  Google Scholar 

  316. Jones PA, Taylor SM, Wilson VL (1983) Inhibition of DNA methylation by 5-azacytidine. Recent Results Cancer Res 84: 202–211

    CAS  PubMed  Google Scholar 

  317. Raj K, John A, Ho A et al. (2007) CDKN2B methylation status and isolated chromosome 7 abnormalities predict responses to treatment with 5-azacytidine. Leukemia 21: 1937–1944

    Article  CAS  PubMed  Google Scholar 

  318. O.Dwyer K, Maslak P (2008) Azacitidine and the beginnings of therapeutic epigenetic modulation. Expert Opin Pharmacother 9: 1981–1986

    Article  PubMed  Google Scholar 

  319. Kaminskas E, Farrell AT, Wang YC, Sridhara R, Pazdur R (2005) FDA drug approval summary: azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist 10: 176–182

    Article  CAS  PubMed  Google Scholar 

  320. Silverman LR, Demakos EP, Peterson BL et al. (2002) Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 20: 2429–2440

    Article  CAS  PubMed  Google Scholar 

  321. Silverman LR, Holland JF, Weinberg RS et al. (1993) Effects of treatment with 5-azacytidine on the in vivo and in vitro hematopoiesis in patients with myelodysplastic syndromes. Leukemia 7(Suppl 1): 21–29

    PubMed  Google Scholar 

  322. Silverman LR, McKenzie DR, Peterson BL et al. (2006) Further analysis of trials with azacitidine in patients with myelodysplastic syndrome: studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B. J Clin Oncol 24: 3895–3903

    Article  CAS  PubMed  Google Scholar 

  323. Kornblith AB, Herndon JE, Silverman LR et al. (2002) Impact of azacytidine on the quality of life of patients with myelodysplastic syndrome treated in a randomized phase III trial: a Cancer and Leukemia Group B study. J Clin Oncol 20: 2441–2452

    Article  CAS  PubMed  Google Scholar 

  324. Lim Z, Ho AYL, Samuel J, Hayden J, Garcia-Manero G, Mufti GJ (2007) Outcomes of MDS Patients with Chromosome 7 Abnormalities Treated with 5-Azacytidine. Blood 110: Abstract 1449

    Google Scholar 

  325. De Padua Silva L, de Lima M (2007) HagopKantarjian Richard Champlin Stefan Faderl Sergio Giralt Partow Kebriaei Jan Davisson Eli Estey Guillermo Garcia-Manero Jean-Pierre Issa and Farhad Ravandi. Outcome of allogeneic stem cell transplantation after hypomethylating therapy with 20-deoxy-5 azacytidine for patientswithmyelodysplastic syndrome. Blood 110: Abstract 1468

    Google Scholar 

  326. Ruter B, Wijermans PW, Lubbert M (2006) Superiority of prolonged low-dose azanucleoside administration? Results of 5-aza-2′-deoxycytidine retreatment in high-risk myelodysplasia patients. Cancer 106: 1744–1750

    Article  PubMed  CAS  Google Scholar 

  327. Lyons RM, Cosgriff T (2007) Sanjiv Modi Heidi McIntyre Indra Fernando Jay Backstrom and C. L. Beach. Results of the initial treatment phase of a study of three alternative dosing schedules of azacitidine (Vidaza®) in Patients with Myelodysplastic Syndromes (MDS). Blood 110: Abstract 819

    Google Scholar 

  328. Abdulhaq H, Rossetti JM (2007) The role of azacitidine in the treatment of myelodysplastic syndromes. Expert Opin Investig Drugs 16: 1967–1975

    Article  CAS  PubMed  Google Scholar 

  329. Holsinger AL, Ramakrishnan A, Storer B, Becker PS, Petersdorf S, Deeg HJ, Scott BL (2007) Therapy of myelodysplastic syndrome (MDS) with azacitidine given in combination with etanercept: a phase II study. Blood 110: Abstract 1452

    Google Scholar 

  330. Garcia-Manero G, Stoltz ML, Ward MR, Kantarjian H, Sharma S (2008) A pilot pharmacokinetic study of oral azacitidine. Leukemia 22: 1680–1684

    Article  CAS  PubMed  Google Scholar 

  331. Gattei V, Aldinucci D, Petti MC, Da Ponte A, Zagonel V, Pinto A (1993) In vitro and in vivo effects of 5-aza-2′-deoxycytidine (Decitabine) on clonogenic cells from acute myeloid leukemia patients. Leukemia 7(Suppl 1): 42–48

    PubMed  Google Scholar 

  332. Pinto A, Attadia V, Fusco A, Ferrara F, Spada OA, Di Fiore PP (1984) 5-Aza-2′-deoxycytidine induces terminal differentiation of leukemic blasts from patients with acute myeloid leukemias. Blood 64: 922–929

    CAS  PubMed  Google Scholar 

  333. Pinto A, Zagonel V, Attadia V et al. (1989) 5-Aza-20-deoxycytidine as a differentiation inducer in acute myeloid leukaemias and myelodysplastic syndromes of the elderly. Bone Marrow Transplant 4(Suppl 3): 28–32

    PubMed  Google Scholar 

  334. Borthakur G, Ahdab SE, Ravandi F et al. (2008) Activity of decitabine in patients with myelodysplastic syndrome previously treated with azacitidine. Leuk Lymphoma 49: 690–695

    Article  CAS  PubMed  Google Scholar 

  335. Kantarjian H, Issa JP, Rosenfeld CS et al. (2006) Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 106: 1794–1803

    Article  CAS  PubMed  Google Scholar 

  336. Wijermans P, Lubbert M, Verhoef G et al. (2000) Low-dose 5-aza-2′-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol 18: 956–962

    CAS  PubMed  Google Scholar 

  337. Wijermans PW, Krulder JW, Huijgens PC, Neve P (1997) Continuous infusion of low-dose 5-aza-2′-deoxycytidine in elderly patients with high-risk myelodysplastic syndrome. Leukemia 11(Suppl 1): S19–S23

    PubMed  Google Scholar 

  338. Kantarjian HM, Issa JP (2005) Decitabine dosing schedules. Semin Hematol 42: S17–S22

    Article  CAS  PubMed  Google Scholar 

  339. Kantarjian H, Oki Y, Garcia-Manero G et al. (2007) Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood 109: 52–57

    Article  CAS  PubMed  Google Scholar 

  340. Steensma DP, Baer MR, Slack JL, Buckstein R, Godley L, Larsen JS, Cullen MT, Kantarjian HM (2007) Preliminary results of a phase II study of decitabine administered daily for 5 days every 4 weeks to adults with myelodysplastic syndrome (MDS). Blood 110: Abstract 1450

    Google Scholar 

  341. Giagounidis AA (2007) Decitabine dosage in myelodysplastic syndromes. Blood 110: 1082–1083

    Article  CAS  PubMed  Google Scholar 

  342. De Padua SL, de Lima M, Kantarjian H et al. (2009) Feasibility of allo-SCT after hypomethylating therapy with decitabine for myelodysplastic syndrome. Bone Marrow Transplant 43(11): 839–843

    Article  CAS  Google Scholar 

  343. Lubbert M, Bertz H, Ruter B et al. (2009) Non-intensive treatment with low-dose 5-aza-2′-deoxycytidine (DAC) prior to allogeneic blood SCT of older MDS/AML patients. Bone Marrow Transplant [Epub ahead of print]

    Google Scholar 

  344. Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349: 2042–2054

    Article  CAS  PubMed  Google Scholar 

  345. Griffiths EA, Gore SD (2008) DNA methyltransferase and histone deacetylase inhibitors in the treatment of myelodysplastic syndromes. Semin Hematol 45: 23–30

    Article  CAS  PubMed  Google Scholar 

  346. Kuendgen A, Lubbert M (2008) Current status of epigenetic treatment in myelodysplastic syndromes. Ann Hematol 87: 601–611

    Article  CAS  PubMed  Google Scholar 

  347. Kuendgen A, Strupp C, Aivado M et al. (2004) Treatment of myelodysplastic syndromes with valproic acid alone or in combination with all-trans retinoic acid. Blood 104: 1266–1269

    Article  CAS  PubMed  Google Scholar 

  348. Kuendgen A, Knipp S, Fox F et al. (2005) Results of a phase 2 study of valproic acid alone or in combination with all-trans retinoic acid in 75 patients with myelodysplastic syndrome and relapsed or refractory acute myeloid leukemia. Ann Hematol 84(Suppl 1): 61–66

    Article  CAS  PubMed  Google Scholar 

  349. Kuendgen A, Schmid M, Schlenk R et al. (2006) The histone deacetylase (HDAC) inhibitor valproic acid as monotherapy or in combination with all-trans retinoic acid in patients with acute myeloid leukemia. Cancer 106: 112–119

    Article  CAS  PubMed  Google Scholar 

  350. Gore SD (2005) Combination therapy with DNA methyltransferase inhibitors in hematologic malignancies. Nat Clin Pract Oncol 2(Suppl 1): S30–S35

    Article  CAS  PubMed  Google Scholar 

  351. Gore SD, Baylin S, Sugar E et al. (2006) Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res 66: 6361–6369

    Article  CAS  PubMed  Google Scholar 

  352. Bellos F, Mahlknecht U (2008) Valproic acid and all-trans retinoic acid: meta-analysis of a palliative treatment regimen in AML and MDS patients. Onkologie 31: 629–633

    Article  CAS  PubMed  Google Scholar 

  353. Ryningen A, Stapnes C, Lassalle P, Corbascio M, Gjertsen BT, Bruserud O (2009) A subset of patients with high-risk acute myelogenous leukemia shows improved peripheral blood cell counts when treated with the combination of valproic acid, theophylline and all-trans retinoic acid. Leuk Res 33(6): 779–787. Epub 2008

    Article  CAS  PubMed  Google Scholar 

  354. Siitonen T, Timonen T, Juvonen E et al. (2007) Valproic acid combined with 13-cis retinoic acid and 1, 25-dihydroxyvitamin D3 in the treatment of patients with myelodysplastic syndromes. Haematologica 92: 1119–1122

    Article  CAS  PubMed  Google Scholar 

  355. Garcia-Manero G, Yang H, Bueso-Ramos C et al. (2008) Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood 111: 1060–1066

    Article  CAS  PubMed  Google Scholar 

  356. Pilatrino C, Cilloni D, Messa E et al. (2005) Increase in platelet count in older, poor-risk patients with acute myeloid leukemia or myelodysplastic syndrome treated with valproic acid and all-trans retinoic acid. Cancer 104: 101–109

    Article  CAS  PubMed  Google Scholar 

  357. Yang H, Hoshino K, Sanchez-Gonzalez B, Kantarjian H, Garcia-Manero G (2005) Antileukemia activity of the combination of 5-aza-2′-deoxycytidine with valproic acid. Leuk Res 29: 739–748

    Article  CAS  PubMed  Google Scholar 

  358. Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B, et al. (2006) Phase 1/2 study of the combination of 5-aza-2′-deoxycytidine with valproic acid in patients with leukemia. Blood 108: 3271–3279

    Article  CAS  PubMed  Google Scholar 

  359. Soriano AO, Yang H, Faderl S et al. (2007) Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome. Blood 110: 2302–2308

    Article  CAS  PubMed  Google Scholar 

  360. Maslak P, Chanel S, Camacho LH et al. (2006) Pilot study of combination transcriptional modulation therapy with sodium phenylbutyrate and 5-azacytidine in patients with acute myeloid leukemia or myelodysplastic syndrome. Leukemia 20: 212–217

    Article  CAS  PubMed  Google Scholar 

  361. Raza A, Meyer P, Dutt D et al. (2001) Thalidomide produces transfusion independence in long-standing refractory anemias of patients with myelodysplastic syndromes. Blood 98: 958–965

    Article  CAS  PubMed  Google Scholar 

  362. Moreno-Aspitia A, Colon-Otero G, Hoering A et al. (2006) Thalidomide therapy in adult patients with myelodysplastic syndrome. A North Central Cancer Treatment Group phase II trial. Cancer 107: 767–772

    Article  CAS  PubMed  Google Scholar 

  363. Raza A, Mehdi M, Mumtaz M, Ali F, Lascher S, Galili N (2008) Combination of 5-azacytidine and thalidomide for the treatment of myelodysplastic syndromes and acute myeloid leukemia. Cancer 113: 1596–1604

    Article  CAS  PubMed  Google Scholar 

  364. Kelaidi C, Park S, Brechignac S et al. (2008) Treatment of myelodysplastic syndromes with 5q deletion before the lenalidomide era; the GFM experience with EPO and thalidomide. Leuk Res 32: 1049–1053

    Article  CAS  PubMed  Google Scholar 

  365. List A, Kurtin S, Roe DJ et al. (2005) Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med 352: 549–557

    Article  CAS  PubMed  Google Scholar 

  366. Ebert BL, Galili N, Tamayo P et al. (2008) An erythroid differentiation signature predicts response to lenalidomide in myelodysplastic syndrome. PLoS Med 5: e35

    Article  PubMed  CAS  Google Scholar 

  367. Raza A, Reeves JA, Feldman EJ et al. (2008) Phase 2 study of lenalidomide in transfusion-dependent, low-risk, and intermediate-1 risk myelodysplastic syndromes with karyotypes other than deletion 5q. Blood 111: 86–93

    Article  CAS  PubMed  Google Scholar 

  368. List A, Dewald G, Bennett J et al. (2006) Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med 355: 1456–1465

    Article  CAS  PubMed  Google Scholar 

  369. Giagounidis AA, Germing U, Strupp C, Hildebrandt B, Heinsch M, Aul C (2005) Prognosis of patients with del (5q) MDS and complex karyotype and the possible role of lenalidomide in this patient subgroup. Ann Hematol 84: 569–571

    Article  CAS  PubMed  Google Scholar 

  370. Knop S, Einsele H, Bargou R, Cosgrove D, List A (2008) Adjusted dose lenalidomide is safe and effective in patients with deletion (5q) myelodysplastic syndrome and severe renal impairment. Leuk Lymphoma 49: 346–349

    Article  CAS  PubMed  Google Scholar 

  371. Billstrom R, Johansson H, Johansson B, Mitelman F (1995) Immune-mediated complications in patients with myelodysplastic syndromes — clinical and cytogenetic features. Eur J Haematol 55: 42–48

    CAS  PubMed  Google Scholar 

  372. Hamblin TJ (1996) Immunological abnormalities in myelodysplastic syndromes. Semin Hematol 33: 150–162

    CAS  PubMed  Google Scholar 

  373. Melenhorst JJ, Eniafe R, Follmann D, Nakamura R, Kirby M, Barrett AJ (2002) Molecular and flow cytometric characterization of the CD4 and CD8 T-cell repertoire in patients with myelodysplastic syndrome. Br J Haematol 119: 97–105

    Article  CAS  PubMed  Google Scholar 

  374. Molldrem JJ, Jiang YZ, Stetler-Stevenson M, Mavroudis D, Hensel N, Barrett AJ (1998) Haematological response of patients with myelodysplastic syndrome to antithymocyte globulin is associated with a loss of lymphocyte-mediated inhibition of CFU-GM and alterations in T-cell receptor Vbeta profiles. Br J Haematol 102: 1314–1322

    Article  CAS  PubMed  Google Scholar 

  375. Teramura M, Kobayashi S, Iwabe K, Yoshinaga K, Mizoguchi H (1997) Mechanism of action of antithymocyte globulin in the treatment of aplastic anaemia: in vitro evidence for the presence of immunosuppressive mechanism. Br J Haematol 96: 80–84

    Article  CAS  PubMed  Google Scholar 

  376. Kao SY, Xu W, Brandwein JM et al. (2008) Outcomes of older patients (>-60 years) with acquired aplastic anaemia treated with immunosuppressive therapy. Br J Haematol 143: 738–743

    Article  PubMed  Google Scholar 

  377. Michallet MC, Preville X, Flacher M, Fournel S, Genestier L, Revillard JP (2003) Functional antibodies to leukocyte adhesion molecules in antithymocyte globulins. Transplantation 75: 657–662

    Article  CAS  PubMed  Google Scholar 

  378. Sloand EM, Mainwaring L, Fuhrer M et al. (2005) Preferential suppression of trisomy 8 compared with normal hematopoietic cell growth by autologous lymphocytes in patients with trisomy 8 myelodysplastic syndrome. Blood 106: 841–851

    Article  CAS  PubMed  Google Scholar 

  379. Lim ZY, Killick S, Germing U et al. (2007) Low IPSS score and bone marrow hypocellularity in MDS patients predict hematological responses to antithymocyte globulin. Leukemia 21: 1436–1441

    Article  CAS  PubMed  Google Scholar 

  380. Killick SB, Mufti G, Cavenagh JD et al. (2003) A pilot study of antithymocyte globulin (ATG) in the treatment of patients with ‘low-risk’ myelodysplasia. Br J Haematol 120: 679–684

    Article  CAS  PubMed  Google Scholar 

  381. Deeg HJ, Jiang PY, Holmberg LA, Scott B, Petersdorf EW, Appelbaum FR (2004) Hematologic responses of patients with MDS to antithymocyte globulin plus etanercept correlate with improved flow scores of marrow cells. Leuk Res 28: 1177–1180

    Article  PubMed  CAS  Google Scholar 

  382. Stadler M, Germing U, Kliche KO et al. (2004) Aprospective, randomised, phase II study of horse antithymocyte globulin vs rabbit antithymocyte globulin as immune-modulating therapy in patients with low-risk myelodysplastic syndromes. Leukemia 18: 460–465

    Article  CAS  PubMed  Google Scholar 

  383. Yazji S, Giles FJ, Tsimberidou AM et al. (2003) Antithymocyte globulin (ATG)-based therapy in patients withmyelodysplastic syndromes. Leukemia 17:2101–2106

    Article  CAS  PubMed  Google Scholar 

  384. Garg R, Faderl S, Garcia-Manero G et al. (2009) Phase II study of rabbit anti-thymocyte globulin, cyclosporine and granulocyte colony-stimulating factor in patients with aplastic anemia and myelodysplastic syndrome. Leukemia 23(7): 1297–1302

    Article  CAS  PubMed  Google Scholar 

  385. Steensma DP, Dispenzieri A, Moore SB, Schroeder G, Tefferi A (2003) Antithymocyte globulin has limited efficacy and substantial toxicity in unselected anemic patients with myelodysplastic syndrome. Blood 101: 2156–2158

    Article  CAS  PubMed  Google Scholar 

  386. Ogata M, Ohtsuka E, Imamura T et al. (2004) Response to cyclosporine therapy in patients with myelodysplastic syndrome: a clinical study of 12 cases and literature review. Int J Hematol 80: 35–42

    Article  CAS  PubMed  Google Scholar 

  387. Jonasova A, Neuwirtova R, Cermak J et al. (1998) Cyclosporin A therapy in hypoplastic MDS patients and certain refractory anaemias without hypoplastic bone marrow. Br J Haematol 100: 304–309

    Article  CAS  PubMed  Google Scholar 

  388. Atoyebi W, Bywater L, Rawlings L, Brunskill S, Littlewood TJ (2002) Treatment of myelodysplasia with oral cyclosporin. Clin Lab Haematol 24: 211–214

    Article  CAS  PubMed  Google Scholar 

  389. Catalano L, Selleri C, Califano C et al. (2000) Prolonged response to cyclosporin-A in hypoplastic refractory anemia and correlation with in vitro studies. Haematologica 85: 133–138

    CAS  PubMed  Google Scholar 

  390. Selleri C, Maciejewski JP, Catalano L et al. (2002) Effects of cyclosporine on hematopoietic and immune functions in patients with hypoplastic myelodysplasia: in vitro and in vivo studies. Cancer 95: 1911–1922

    Article  CAS  PubMed  Google Scholar 

  391. Biesma DH, van den Tweel JG, Verdonck LF (1997) Immunosuppressive therapy for hypoplastic myelodysplastic syndrome. Cancer 79: 1548–1551

    Article  CAS  PubMed  Google Scholar 

  392. Greil R, Anether G, Johrer K, Tinhofer I (2003) Tracking death dealing by Fas and TRAIL in lymphatic neoplastic disorders: pathways, targets, and therapeutic tools. J Leukoc Biol 74: 311–330

    Article  CAS  PubMed  Google Scholar 

  393. Sawanobori M, Yamaguchi S, Hasegawa M et al. (2003) Expression of TNF receptors and related signaling molecules in the bone marrow from patients with myelodysplastic syndromes. Leuk Res 27: 583–591

    Article  CAS  PubMed  Google Scholar 

  394. Stifter G, Heiss S, Gastl G, Tzankov A, Stauder R (2005) Over-expression of tumor necrosis factor-alpha in bone marrow biopsies from patients with myelodysplastic syndromes: relationship to anemia and prognosis. Eur J Haematol 75: 485–491

    Article  CAS  PubMed  Google Scholar 

  395. Raza A, Candoni A, Khan U et al. (2004) Remicade as TNF suppressor in patients with myelodysplastic syndromes. Leuk Lymphoma 45: 2099–2104

    Article  CAS  PubMed  Google Scholar 

  396. Stasi R, Amadori S, Newland AC, Provan D (2005) Infliximab chimeric antitumor necrosis factor — a monoclonal antibody as potential treatment for myelodysplastic syndromes. Leuk Lymphoma 46: 509–516

    Article  CAS  PubMed  Google Scholar 

  397. Boula A, Voulgarelis M, Giannouli S et al. (2006) Effect of cA2 anti-tumor necrosis factor-alpha antibody therapy on hematopoiesis of patients with myelodysplastic syndromes. Clin Cancer Res 12: 3099–3108

    Article  CAS  PubMed  Google Scholar 

  398. Deeg HJ, Gotlib J, Beckham C et al. (2002) Soluble TNF receptor fusion protein (etanercept) for the treatment of myelodysplastic syndrome: a pilot study. Leukemia 16: 162–164

    Article  CAS  PubMed  Google Scholar 

  399. Maciejewski JP, Risitano AM, Sloand EM et al. (2002) Apilot study of the recombinant soluble human tumour necrosis factor receptor (p75)-Fc fusion protein in patients with myelodysplastic syndrome. Br J Haematol 117: 119–126

    Article  CAS  PubMed  Google Scholar 

  400. Rosenfeld C, Bedell C (2002) Pilot study of recombinant human soluble tumor necrosis factor receptor (TNFR:Fc) in patients with low risk myelodysplastic syndrome. Leuk Res 26: 721–724

    Article  CAS  PubMed  Google Scholar 

  401. Stasi R, Amadori S (2002) Infliximab chimaeric anti-tumour necrosis factor alpha monoclonal antibody treatment for patients with myelodysplastic syndromes. Br J Haematol 116: 334–337

    CAS  PubMed  Google Scholar 

  402. Aguayo A, Kantarjian H, Manshouri T et al. (2000) Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 96: 2240–2245

    CAS  PubMed  Google Scholar 

  403. Hu Q, Dey AL, Yang Y et al. (2004) Soluble vascular endothelial growth factor receptor 1, and not receptor 2, is an independent prognostic factor in acute myeloid leukemia and myelodysplastic syndromes. Cancer 100: 1884–1891

    Article  CAS  PubMed  Google Scholar 

  404. Aguayo A, Kantarjian HM, Estey EH et al. (2002) Plasma vascular endothelial growth factor levels have prognostic significance in patients with acute myeloid leukemia but not in patients with myelodysplastic syndromes. Cancer 95: 1923–1930

    Article  PubMed  Google Scholar 

  405. Verstovsek S, Estey E, Manshouri T et al. (2002) Clinical relevance of vascular endothelial growth factor receptors 1 and 2 in acute myeloid leukaemia and myelodysplastic syndrome. Br J Haematol 118: 151–156

    Article  CAS  PubMed  Google Scholar 

  406. Roboz GJ, Giles FJ, List AF et al. (2006) Phase 1 study of PTK787/ZK 222584, a small molecule tyrosine kinase receptor inhibitor, for the treatment of acute myeloid leukemia and myelodysplastic syndrome. Leukemia 20: 952–957

    Article  CAS  PubMed  Google Scholar 

  407. Giles FJ, Bellamy WT, Estrov Z et al. (2006) The antiangiogenesis agent, AG-013736, has minimal activity in elderly patients with poor prognosis acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Leuk Res 30: 801–811

    Article  CAS  PubMed  Google Scholar 

  408. Giles FJ, Cooper MA, Silverman L et al. (2003) Phase II study of SU5416 — a small-molecule, vascular endothelial growth factor tyrosine-kinase receptor inhibitor — in patients with refractory myeloproliferative diseases. Cancer 97: 1920–1928

    Article  CAS  PubMed  Google Scholar 

  409. Giles FJ, Stopeck AT, Silverman LR et al. (2003) SU5416, a small molecule tyrosine kinase receptor inhibitor, has biologic activity in patients with refractory acute myeloid leukemia or myelodysplastic syndromes. Blood 102: 795–801

    Article  CAS  PubMed  Google Scholar 

  410. Koeffler HP, Heitjan D, Mertelsmann R et al. (1988) Randomized study of 13-cis retinoic acid v placebo in the myelodysplastic disorders. Blood 71: 703–708

    CAS  PubMed  Google Scholar 

  411. Beaupre DM, Kurzrock R (1999) RAS and leukemia: from basic mechanisms to gene-directed therapy. J Clin Oncol 17: 1071–1079

    CAS  PubMed  Google Scholar 

  412. Parker J, Mufti GJ (1996) Ras and myelodysplasia: lessons from the last decade. Semin Hematol 33: 206–224

    CAS  PubMed  Google Scholar 

  413. Bollag G, Clapp DW, Shih S et al. (1996) Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat Genet 12: 144–148

    Article  CAS  PubMed  Google Scholar 

  414. Sebti SM, Hamilton AD (2000) Farnesyltransferase and geranylgeranyltransferase I inhibitors in cancer therapy: important mechanistic and bench to bedside issues. Expert Opin Investig Drugs 9: 2767–2782

    Article  CAS  PubMed  Google Scholar 

  415. Sun J, Qian Y, Hamilton AD, Sebti SM (1998) Both farnesyltransferase and geranylgeranyltransferase I inhibitors are required for inhibition of oncogenic K-Ras prenylation but each alone is sufficient to suppress human tumor growth in nude mouse xenografts. Oncogene 16: 1467–1473

    Article  CAS  PubMed  Google Scholar 

  416. Kurzrock R, Kantarjian HM, Cortes JE et al. (2003) Farnesyltransferase inhibitor R115777 in myelodysplastic syndrome: clinical and biologic activities in the phase 1 setting. Blood 102: 4527–4534

    Article  CAS  PubMed  Google Scholar 

  417. Fenaux P, Raza A, Mufti GJ et al. (2007) A multicenter phase 2 study of the farnesyltransferase inhibitor tipifarnib in intermediate-to high-risk myelodysplastic syndrome. Blood 109: 4158–4163

    Article  CAS  PubMed  Google Scholar 

  418. Feldman EJ (2005) Farnesyltransferase inhibitors in myelodysplastic syndrome. Curr Hematol Rep 4: 186–190

    CAS  PubMed  Google Scholar 

  419. De Angelo DJ, Stone RM, Heaney ML et al. (2006) Phase I clinical results with tandutinib (MLN518), a novel FLT3 antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: safety, pharmacokinetics, and pharmacodynamics. Blood 108(12): 3674–3681

    Article  CAS  Google Scholar 

  420. Sanz C, Richard C, Prosper F, Fernandez-Luna JL (2002) Nuclear factor κB is activated in myelodysplastic bone marrow cells. Haematologica 87: 1005–1006

    CAS  PubMed  Google Scholar 

  421. Braun T, Carvalho G, Coquelle A et al. (2006) NF-κB constitutes a potential therapeutic target in high-risk myelodysplastic syndrome. Blood 107: 1156–1165

    Article  CAS  PubMed  Google Scholar 

  422. Fabre C, Carvalho G, Tasdemir E et al. (2007) NF-κB inhibition sensitizes to starvation-induced cell death in high-risk myelodysplastic syndrome and acute myeloid leukemia. Oncogene 26: 4071–4083

    Article  CAS  PubMed  Google Scholar 

  423. Lonial S, Waller EK, Richardson PG et al. (2005) Risk factors and kinetics of thrombocytopenia associated with bortezomib for relapsed, refractory multiple myeloma. Blood 106: 3777–3784

    Article  CAS  PubMed  Google Scholar 

  424. Terpos E, Verrou E, Banti A, Kaloutsi V, Lazaridou A, Zervas K (2009) Bortezomib is an effective agent for MDS/MPD syndrome with 5q — anomaly and thrombocytosis. Leuk Res 31(4): 559–562

    Article  CAS  Google Scholar 

  425. Shetty V, Verspoor F (2003) Effect of proteasome inhibition by Bortezomib on TNFalpha and apoptosis in patients with MDS. Blood 106(Suppl 1): Abstract 1534

    Google Scholar 

  426. Natarajan S, Fenaux P, Vey N, Guerci A, Dreyfus F et al. (2007) Bortezomib + Low dose cytarabine in Int-2 and high risk MDS. Interim results of a phase I/II trial by the GFM. Blood 110: Abstract 1453

    Google Scholar 

  427. Kerbauy DM, Lesnikov V, Abbasi N, Seal S, Scott B, Deeg HJ (2005) NF-kappaB and FLIP in arsenic trioxide (ATO)-induced apoptosis in myelodysplastic syndromes (MDSs). Blood 106: 3917–3925

    Article  CAS  PubMed  Google Scholar 

  428. Jing Y, Dai J, Chalmers-Redman RM, Tatton WG, Waxman S (1999) Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 94: 2102–2111

    CAS  PubMed  Google Scholar 

  429. List A, Beran M, DiPersio J et al. (2003) Opportunities for Trisenox (arsenic trioxide) in the treatment of myelodysplastic syndromes. Leukemia 17: 1499–1507

    Article  CAS  PubMed  Google Scholar 

  430. Roboz GJ, Dias S, Lam G et al. (2000) Arsenic trioxide induces dose-and time-dependent apoptosis of endothelium and may exert an antileukemic effect via inhibition of angiogenesis. Blood 96: 1525–1530

    CAS  PubMed  Google Scholar 

  431. Lew YS, Brown SL, Griffin RJ, Song CW, Kim JH (1999) Arsenic trioxide causes selective necrosis in solid murine tumors by vascular shutdown. Cancer Res 59: 6033–6037

    CAS  PubMed  Google Scholar 

  432. Vey N, Bosly A, Guerci A et al. (2006) Arsenic trioxide in patients with myelodysplastic syndromes: a phase II multicenter study. J Clin Oncol 24: 2465–2471

    Article  CAS  PubMed  Google Scholar 

  433. Schiller GJ, Slack J, Hainsworth JD et al. (2006) Phase II multicenter study of arsenic trioxide in patients with myelodysplastic syndromes. J Clin Oncol 24: 2456–2464

    Article  CAS  PubMed  Google Scholar 

  434. Raza A, Buonamici S, Lisak L et al. (2004) Arsenic trioxide and thalidomide combination produces multi-lineage hematological responses in myelodysplastic syndromes patients, particularly in those with high pre-therapy EVI1 expression. Leuk Res 28: 791–803

    Article  CAS  PubMed  Google Scholar 

  435. Zheng WL, Zhang GS, Xu YX, Shen JK, Dai CW, Pei MF (2008) Arsenic trioxide, thalidomide and retinoid acid combination therapy in higher risk myelodysplastic syndrome patients. Leuk Res 32: 251–254

    Article  CAS  PubMed  Google Scholar 

  436. Shimazaki K, Ohshima K, Suzumiya J, Kawasaki C, Kikuchi M (2000) Evaluation of apoptosis as a prognostic factor in myelodysplastic syndromes. Br J Haematol 110: 584–590

    Article  CAS  PubMed  Google Scholar 

  437. Kim MK, Lee JL, Cho HS et al. (2006) The hematologic response to anti-apoptotic cytokine therapy: results of pentoxifylline, ciprofloxacin, and dexamethasone treatment for patients with myelodysplastic syndrome. J Korean Med Sci 21: 40–45

    Article  CAS  PubMed  Google Scholar 

  438. Evers C, Beier M, Poelitz A et al. (2007) Molecular definition of chromosome arm 5q deletion end points and detection of hidden aberrations in patients with myelodysplastic syndromes and isolated del(5q) using oligonucleotide array CGH. Genes Chromosomes. Cancer 46: 1119–1128

    CAS  Google Scholar 

  439. Boultwood J, Lewis S, Wainscoat JS (1994) The 5q-syndrome. Blood 84: 3253–3260

    CAS  PubMed  Google Scholar 

  440. Horrigan SK, Arbieva ZH, Xie HY et al. (2000) Delineation of a minimal interval and identification of 9 candidates for a tumor suppressor gene in malignant myeloid disorders on 5q31. Blood 95: 2372–2377

    CAS  PubMed  Google Scholar 

  441. Hu Z, Gomes I, Horrigan SK et al. (2001) A novel nuclear protein, 5qNCA (LOC51780) is a candidate for the myeloid leukemia tumor suppressor gene on chromosome 5 band q31. Oncogene 20: 6946–6954

    Article  CAS  PubMed  Google Scholar 

  442. Lezon-Geyda K, Najfeld V, Johnson EM (2001) Deletions of PURA, at 5q31, and PURB, at 7p13, in myelodysplastic syndrome and progression to acute myelogenous leukemia. Leukemia 15: 954–962

    Article  CAS  PubMed  Google Scholar 

  443. Ebert BL, Pretz J, Bosco J, Chang CY, Golub TR et al. (2007) Bortezomib + Bortezomib + Low dose cytarabine in Int-2 and high risk MDS. Interim results of a phase I/II trial by the GFM. Blood 110: Abstract 1

    Google Scholar 

  444. Giagounidis AA, Germing U, Aul C (2006) Biological and prognostic significance of chromosome 5q deletions in myeloid malignancies. Clin Cancer Res 12: 5–10

    Article  CAS  PubMed  Google Scholar 

  445. Wong KF, Chan JK, Chu YC, Kwong YL (1992) Clonal evolution in primary 5q-syndrome. Cancer 70: 100–103

    Article  CAS  PubMed  Google Scholar 

  446. Schiffer CA, Lee EJ, Tomiyasu T, Wiernik PH, Testa Jr (1989) Prognostic impact of cytogenetic abnormalities in patients with de novo acute nonlymphocytic leukemia. Blood 73: 263–270

    CAS  PubMed  Google Scholar 

  447. Wattel E, Lai JL, Hebbar M et al. (1993) De novo myelodysplastic syndrome (MDS) with deletion of the long arm of chromosome 20: a subtype of MDS with distinct hematological and prognostic features? Leuk Res 17: 921–926

    Article  CAS  PubMed  Google Scholar 

  448. Sashida G, Takaku TI, Shoji N et al. (2003) Clinico-hematologic features of myelodysplastic syndrome presenting as isolated thrombocytopenia: an entity with a relatively favorable prognosis. Leuk Lymphoma 44: 653–658

    Article  PubMed  Google Scholar 

  449. Steensma DP, Dewald GW, Hodnefield JM, Tefferi A, Hanson CA (2003) Clonal cytogenetic abnormalities in bone marrow specimens without clear morphologic evidence of dysplasia: a form fruste of myelodysplasia? Leuk Res 27: 235–242

    Article  PubMed  Google Scholar 

  450. Gupta R, Soupir CP, Johari V, Hasserjian RP (2007) Myelodysplastic syndrome with isolated deletion of chromosome 20q: an indolent disease with minimal morphological dysplasia and frequent thrombocytopenic presentation. Br J Haematol 139: 265–268

    Article  PubMed  Google Scholar 

  451. Aktas D, Tuncbilek E (2006) Myelodysplastic syndrome associated with monosomy 7 in childhood: a retrospective study. Cancer Genet Cytogenet 171: 72–75

    Article  CAS  PubMed  Google Scholar 

  452. Niemeyer CM, Baumann I (2008) Myelodysplastic syndrome in children and adolescents. Semin Hematol 45: 60–70

    Article  CAS  PubMed  Google Scholar 

  453. Sugimori N, Kondo Y, Shibayama M et al. (2009) Aberrant increase in the immature platelet fraction in patients with myelodysplastic syndrome: a marker of karyotypic abnormalities associated with poor prognosis. Eur J Haematol 82: 54–60

    Article  CAS  PubMed  Google Scholar 

  454. Maciejewski JP, Risitano A, Sloand EM, Nunez O, Young NS (2002) Distinct clinical outcomes for cytogenetic abnormalities evolving from aplastic anemia. Blood 99: 3129–3135

    Article  CAS  PubMed  Google Scholar 

  455. Sloand EM, Kim S, Fuhrer M et al. (2002) Fas-mediated apoptosis is important in regulating cell replication and death in trisomy 8 hematopoietic cells but not in cells with other cytogenetic abnormalities. Blood 100: 4427–4432

    Article  CAS  PubMed  Google Scholar 

  456. Jary L, Mossafa H, Fourcade C, Genet P, Pulik M, Flandrin G (1997) The 17p-syndrome: a distinct myelodysplastic syndrome entity? Leuk Lymphoma 25: 163–168

    CAS  PubMed  Google Scholar 

  457. Marisavljevic D, Rolovic Z, Panitic M et al. (2004) Chromosome 17 abnormalities in patients with primary myelodysplastic syndrome: incidence and biologic significance. Srp Arh Celok Lek 132: 10–13

    Article  PubMed  Google Scholar 

  458. Yamamoto K, Nagata K, Tsurukubo Y, Morishita K, Hamaguchi H (2000) A novel translocation t(3;22)(q21; q11) involving 3q21 in myelodysplastic syndrome-derived overt leukemia with thrombocytosis. Leuk Res 24: 453–457

    Article  CAS  PubMed  Google Scholar 

  459. Hirabayashi K, Kawakami H, Kodaira H (2003) 3q21q26 syndrome with minor-BCR/ABL type Ph chromosome. Rinsho Ketsueki 44: 1166–1171

    PubMed  Google Scholar 

  460. Jotterand BM, Parlier V, Muhlematter D, Grob JP, Beris P (1992) Three new cases of chromosome 3 rearrangement in bands q21 and q26 with abnormal thrombopoiesis bring further evidence to the existence of a 3q21q26 syndrome. Cancer Genet Cytogenet 59: 138–160

    Article  Google Scholar 

  461. Suzukawa K, Parganas E, Gajjar A et al. (1994) Identification of a breakpoint cluster region 3′ of the ribophorin I gene at 3q21 associated with the transcriptional activation of the EVI1 gene in acute myelogenous leukemias with inv(3) (q21q26). Blood 84: 2681–2688

    CAS  PubMed  Google Scholar 

  462. Testoni N, Borsaru G, Martinelli G et al. (1999) 3q21 and 3q26 cytogenetic abnormalities in acute myeloblastic leukemia: biological and clinical features. Haematologica 84: 690–694

    CAS  PubMed  Google Scholar 

  463. Lahortiga I, Vazquez I, Agirre X et al. (2004) Molecular heterogeneity inAML/MDS patients with 3q21q26 rearrangements. Genes Chromosomes. Cancer 40: 179–189

    CAS  Google Scholar 

  464. Wang HG, Reed JC (1998) Bc1-2, Raf-1 and mitochondrial regulation of apoptosis. Biofactors 8: 13–16

    Article  CAS  PubMed  Google Scholar 

  465. Pedersen-Bjergaard J, Andersen MT, Andersen MK (2007) Genetic pathways in the pathogenesis of therapy-related myelodysplasia and acute myeloid leukemia. Hematology. Am Soc Hematol Educ Program 2007: 392–397

    Google Scholar 

  466. Praga C, Bergh J, Bliss J et al. (2005) Risk of acute myeloid leukemia and myelodysplastic syndrome in trials of adjuvant epirubicin for early breast cancer: correlation with doses of epirubicin and cyclophosphamide. J Clin Oncol 23: 4179–4191

    Article  CAS  PubMed  Google Scholar 

  467. Curtis RE, Boice JD Jr, Stovall M et al. (1992) Risk of leukemia after chemotherapy and radiation treatment for breast cancer. N Engl J Med 326: 1745–1751

    CAS  PubMed  Google Scholar 

  468. Le Deley MC, Suzan F, Cutuli B et al. (2007) Anthracyclines, mitoxantrone, radiotherapy, and granulocyte colony-stimulating factor: risk factors for leukemia and myelodysplastic syndrome after breast cancer. J Clin Oncol 25: 292–300

    Article  PubMed  CAS  Google Scholar 

  469. Smith RE (2003) Risk for the development of treatmentrelated acute myelocytic leukemia and myelodysplastic syndrome among patients with breast cancer: review of the literature and the National Surgical Adjuvant Breast and Bowel Project experience. Clin Breast Cancer 4: 273–279

    Article  CAS  PubMed  Google Scholar 

  470. Leone G, Pagano L, Ben Yehuda D, Voso MT (2007) Therapy-related leukemia and myelodysplasia: susceptibility and incidence. Haematologica 92: 1389–1398

    Article  CAS  PubMed  Google Scholar 

  471. Pedersen-Bjergaard J, Pedersen M, Roulston D, Philip P (1995) Different genetic pathways in leukemogenesis for patients presenting with therapy-related myelodysplasia and therapy-related acute myeloid leukemia. Blood 86: 3542–3552

    CAS  PubMed  Google Scholar 

  472. Levine EG, Bloomfield CD (1992) Leukemias and myelodysplastic syndromes secondary to drug, radiation, and environmental exposure. Semin Oncol 19: 47–84

    CAS  PubMed  Google Scholar 

  473. Whitlock JA, Greer JP, Lukens JN (1991) Epipodophyllotoxin-related leukemia. Identification of a new subset of secondary leukemia. Cancer 68: 600–604

    Article  CAS  PubMed  Google Scholar 

  474. Bloomfield CD, Archer KJ, Mrozek K et al. (2002) 11q23 balanced chromosome aberrations in treatment-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosomes. Cancer 33: 362–378

    Google Scholar 

  475. Maschek H, Kaloutsi V, Rodriguez-Kaiser M et al. (1993) Hypoplastic myelodysplastic syndrome: incidence, morphology, cytogenetics, and prognosis. Ann Hematol 66: 117–122

    Article  CAS  PubMed  Google Scholar 

  476. Nand S, Godwin JE (1988) Hypoplastic myelodysplastic syndrome. Cancer 62: 958–964

    Article  CAS  PubMed  Google Scholar 

  477. Tuzuner N, Cox C, Rowe JM, Bennett JM (1994) Bone marrow cellularity in myeloid stem cell disorders: impact of age correction. Leuk Res 18: 559–564

    Article  CAS  PubMed  Google Scholar 

  478. Tuzuner N, Cox C, Rowe JM, Watrous D, Bennett JM (1995) Hypocellular myelodysplastic syndromes (MDS): new proposals. Br J Haematol 91: 612–617

    Article  CAS  PubMed  Google Scholar 

  479. Barrett J, Saunthararajah Y, Molldrem J (2000) Myelodysplastic syndrome and aplastic anemia: distinct entities or diseases linked by a common pathophysiology? Semin Hematol 37: 15–29

    Article  CAS  PubMed  Google Scholar 

  480. Wong KF, So CC (2002) Hypoplastic myelodysplastic syndrome-a clinical, morphologic, or genetic diagnosis? Cancer Genet Cytogenet 138: 85–88

    Article  CAS  PubMed  Google Scholar 

  481. Huang TC, Ko BS, Tang JL et al. (2008) Comparison of hypoplastic myelodysplastic syndrome (MDS) with normo-/hypercellular MDS by International Prognostic Scoring System, cytogenetic and genetic studies. Leukemia 22: 544–550

    Article  PubMed  Google Scholar 

  482. Konoplev S, Medeiros LJ, Lennon PA, Prajapati S, Kanungo A, Lin P (2007) Therapy may unmask hypoplastic myelodysplastic syndrome that mimics aplastic anemia. Cancer 110: 1520–1526

    Article  PubMed  Google Scholar 

  483. Matsui WH, Brodsky RA, Smith BD, Borowitz MJ, Jones RJ (2006) Quantitative analysis of bone marrow CD34 cells in aplastic anemia and hypoplastic myelodysplastic syndromes. Leukemia 20: 458–462

    Article  CAS  PubMed  Google Scholar 

  484. Kasahara S, Hara T, Itoh H et al. (2002) Hypoplastic myelodysplastic syndromes can be distinguished from acquired aplastic anaemia by bone marrow stem cell expression of the tumour necrosis factor receptor. Br J Haematol 118: 181–188

    Article  CAS  PubMed  Google Scholar 

  485. Lambertenghi-Deliliers G, Orazi A, Luksch R, Annaloro C, Soligo D (1991) Myelodysplastic syndrome with increased marrow fibrosis: a distinct clinico-pathological entity. Br J Haematol 78: 161–166

    Article  CAS  PubMed  Google Scholar 

  486. Maschek H, Georgii A, Kaloutsi V et al. (1992) Myelofibrosis in primary myelodysplastic syndromes: a retrospective study of 352 patients. Eur J Haematol 48: 208–214

    CAS  PubMed  Google Scholar 

  487. Owen C, Barnett M, Fitzgibbon J (2008) Familial myelodysplasia and acute myeloid leukaemia — a review. Br J Haematol 140: 123–132

    CAS  PubMed  Google Scholar 

  488. Kumar T, Mandla SG, Greer WL (2000) Familial myelodysplastic syndrome with early age of onset. Am J Hematol 64: 53–58

    Article  CAS  PubMed  Google Scholar 

  489. Maserati E, Minelli A, Menna G et al. (2004) Familial myelodysplastic syndromes, monosomy 7/trisomy 8, and mutator effects. Cancer Genet Cytogenet 148: 155–158

    Article  CAS  PubMed  Google Scholar 

  490. Gilchrist DM, Friedman JM, Rogers PC, Creighton SP (1990) Myelodysplasia and leukemia syndrome with monosomy 7: a genetic perspective. Am J Med Genet 35: 437–441

    Article  CAS  PubMed  Google Scholar 

  491. Pradhan A, Mijovic A, Mills K et al. (2004) Differentially expressed genes in adult familial myelodysplastic syndromes. Leukemia 18: 449–459

    Article  CAS  PubMed  Google Scholar 

  492. Germing U, Aul C, Niemeyer CM, Haas R, Bennett JM (2008) Epidemiology, classification and prognosis of adults and children with myelodysplastic syndromes. Ann Hematol 87: 691–699

    Article  PubMed  Google Scholar 

  493. Enright H, Miller W (1997) Autoimmune phenomena in patients with myelodysplastic syndromes. Leuk Lymphoma 24: 483–489

    Article  CAS  PubMed  Google Scholar 

  494. Chuang SS, Jung YC, Li CY (2000) von Willebrand factor is the most reliable immunohistochemical marker for megakaryocytes of myelodysplastic syndrome and chronic myeloproliferative disorders. Am J Clin Pathol 113: 506–511

    Article  CAS  PubMed  Google Scholar 

  495. de Cataldo F, Baudo F, Redaelli R, Corno AR (1995) Abnormal platelet von Willebrand factor (vWF) as a marker of abnormal function in megakaryocytic dysplasia. Am J Hematol 48: 155–157

    Article  CAS  PubMed  Google Scholar 

  496. Ossenkoppele GJ, Graveland WJ, Sonneveld P et al. (2004) The value of fludarabine in addition to ARA-C and G-CSF in the treatment of patients with high-risk myelodysplastic syndromes and AML in elderly patients. Blood 103: 2908–2913

    Article  CAS  PubMed  Google Scholar 

  497. Estey E, Thall P, Beran M, Kantarjian H, Pierce S, Keating M (1997) Effect of diagnosis (refractory anemia with excess blasts, refractory anemia with excess blasts in transformation, or acute myeloid leukemia [AML]) on outcome of AML-type chemotherapy. Blood 90: 2969–2977

    CAS  PubMed  Google Scholar 

  498. Arnold R, de Witte T, van Biezen A et al. (1998) Unrelated bone marrow transplantation in patients with myelodysplastic syndromes and secondary acute myeloid leukemia: an EBMT survey. European Blood and Marrow Transplantation Group. Bone Marrow Transplant 21: 1213–1216

    Article  CAS  PubMed  Google Scholar 

  499. Castro-Malaspina H, Harris RE, Gajewski J et al. (2002) Unrelated donor marrow transplantation for myelodysplastic syndromes: outcome analysis in 510 transplants facilitated by the National Marrow Donor Program. Blood 99: 1943–1951

    Article  CAS  PubMed  Google Scholar 

  500. Ooi J, Iseki T, Takahashi S et al. (2003) Unrelated cord blood transplantation for adult patients with advanced myelodysplastic syndrome. Blood 101: 4711–4713

    Article  CAS  PubMed  Google Scholar 

  501. Richert-Boe KE (1987) Hematologic complications of rheumatic disease. Hematol Oncol Clin North Am 1: 301–320

    CAS  PubMed  Google Scholar 

  502. McCarthy CJ, Sheldon S, Ross CW, McCune WJ (1998) Cytogenetic abnormalities and therapy-related myelodysplastic syndromes in rheumatic disease. Arthritis Rheum 41: 1493–1496

    Article  CAS  PubMed  Google Scholar 

  503. Schonfeld SJ, Gilbert ES, Dores GM et al. (2006) Acute myeloid leukemia following Hodgkin lymphoma: a population-based study of 35, 511 patients. J Natl Cancer Inst 98: 215–218

    PubMed  Google Scholar 

  504. Finazzi G, Caruso V, Marchioli R et al. (2005) Acute leukemia in polycythemia vera: an analysis of 1638 patients enrolled in a prospective observational study. Blood 105: 2664–2670

    Article  CAS  PubMed  Google Scholar 

  505. Cremin P, Flattery M, McCann SR, Daly PA (1996) Myelodysplasia and acute myeloid leukaemia following adjuvant chemotherapy for breast cancer using mitoxantrone and methotrexate with or without mitomycin. Ann Oncol 7: 745–746

    CAS  PubMed  Google Scholar 

  506. Travis LB, Andersson M, Gospodarowicz M et al. (2000) Treatment-associated leukemia following testicular cancer. J Natl Cancer Inst 92: 1165–1171

    Article  CAS  PubMed  Google Scholar 

  507. Felix CA (1998) Secondary leukemias induced by topoisomerase-targeted drugs. Biochim Biophys Acta 1400: 233–255

    CAS  PubMed  Google Scholar 

  508. Thiede C, Koch S, Creutzig E et al. (2006) Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 107: 4011–4020

    Article  CAS  PubMed  Google Scholar 

  509. Stirewalt DL, Kopecky KJ, Meshinchi S et al. (2001) FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood 97: 3589–3595

    Article  CAS  PubMed  Google Scholar 

  510. Christiansen DH, Andersen MK, Pedersen-Bjergaard J (2003) Methylation of p15INK4B is common, is associated with deletion of genes on chromosome arm 7q and predicts a poor prognosis in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 17: 1813–1819

    Article  CAS  PubMed  Google Scholar 

  511. Frohling S, Scholl C, Gilliland DG, Levine RL (2005) Genetics of myeloid malignancies: pathogenetic and clinical implications. J Clin Oncol 23: 6285–6295

    Article  CAS  PubMed  Google Scholar 

  512. List AF, Vardiman J, Issa JP, DeWitte TM (2004) Myelodysplastic syndromes. Hematology. Am Soc Hematol Educ Program 297–317

    Google Scholar 

  513. Ramos F, Fernandez-Ferrero S, Suarez D et al. (1999) Myelodysplastic syndrome: a search for minimal diagnostic criteria. Leuk Res 23: 283–290

    Article  CAS  PubMed  Google Scholar 

  514. Bain BJ (1996) The bone marrowaspirate of healthy subjects. Br J Haematol 94: 206–209

    Article  CAS  PubMed  Google Scholar 

  515. Runde V, de Witte T, Arnold R et al. (1998) Bone marrow transplantation from HLA-identical siblings as first-line treatment in patients with myelodysplastic syndromes: early transplantation is associated with improved outcome. Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 21: 255–261

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this chapter

Cite this chapter

Pleyer, L., Neureiter, D., Faber, V., Greil, R. (2010). Myelodysplastic Syndromes (MDS). In: Greil, R., Pleyer, L., Faber, V., Neureiter, D. (eds) Chronic Myeloid Neoplasias and Clonal Overlap Syndromes. Springer, Vienna. https://doi.org/10.1007/978-3-211-79892-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-79892-8_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-79891-1

  • Online ISBN: 978-3-211-79892-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics