Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 500))

Abstract

Robots can be used to instantiate and test hypotheses about biological systems. This approach to modelling can be described by a number of dimensions: relevance to biology; the level of representation; generality of the mechanisms; the amount of abstraction; the accuracy of the model; how well it matches the behaviour; and what medium is used to construct the model. This helps to clarify the potential advantages of this methodology for understanding how behaviour emerges from interactions between the animal, its task and the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • J. Ayers, P. Zavracky, N. Mcgruer, D. Massa, V. Vorus, R. Mukherjee, and S. Currie. A modular behavioural-based architecture for biomimetic autonomous underwater robots. In Autonomous Vehicles in Mine Countermeasures Symposium, 1998.

    Google Scholar 

  • R.D. Beer, H.J. Chiel, R.D. Quinn, and R.E. Ritzmann. Biorobotic approaches to the study of motor systems. Current Opinion in Neurobiology, 8(6):777–782, 1998.

    Article  Google Scholar 

  • M. Blanchard, RF.M.J Verschure, and F. Claire Rind. Using a mobile robot to study locust collision avoidance responses. International Journal of Neural Systems, 9(5):405–410, 1999.

    Article  Google Scholar 

  • V. Braitenberg. Vehicles: experiments in synthetic psychology. MIT Press, Cambridge, MA, 1984.

    Google Scholar 

  • R. J. Brooks and A. M. Tobias. Choosing the best model: level of detail, complexity and model performance. Mathematical Computer Modelling, 24(4):1–14, 1996.

    Article  MATH  Google Scholar 

  • B. Cartwright and T. Collett. Landmark learning in bees. Journal of Comparative Physiology A, 151:521–543, 1983.

    Article  Google Scholar 

  • K.H. Chan and P.M. Tidwell. The reality of artificial life: can computer simulations become realizations? In submission to Third International Conference on Artificial Life, 1993.

    Google Scholar 

  • A.M. Flynn and R.A. Brooks. Battling reality. Technical Report A.I. Memo 1148 M.I.T. A.I. Lab, M.I.T., 1989.

    Google Scholar 

  • N. Franceschini, J.M. Pichon, and C. Blanes. From insect vision to robot vision. Philosophical Transactions of the Royal Society B, 337:283–294, 1992.

    Article  Google Scholar 

  • F. Grasso, T. Consi, D. Mountain, and J. Atema. Biomimetic robot lobster performs chemo-orientation in turbulence using a pair of spatially separated sensors: Progress and challenges. Robotics and Autonomous Systems, 30(1–2):115–131, 2000.

    Article  Google Scholar 

  • B. Hannaford, J. Winters, C-P Chou, and P-H Marbot. The anthroform biorobotic arm: a system for the study of spinal circuits. Annals of Biomedical Engineering, 23:399–408, 1995.

    Article  Google Scholar 

  • R. R. Harrison and C. Koch. A robust analog VLSI motion sensor based on the visual system of the fly. Autonomous Robotics, 7(3):211–224, 1999.

    Article  Google Scholar 

  • O. Holland and C. Melhuish. Stigmergy, self-organization and sorting in collective robotics. Artificial Life, 5:173–202, 1999.

    Article  Google Scholar 

  • S.A. Huber and H.H. Bulthoff. Simulation and robot implementation of visual orientation behaviour of flies. In R. Pfeifer, B. Blumberg, J.A. Meyer, and S.W. Wilson, editors, From animals to animats 5, pages 77–85, Cambridge, Mass., 1998. MIT Press.

    Google Scholar 

  • H. Ishida, A. Kobayashi, T. Nakamoto, and T. Moriisumi. Three dimensional odor compass. IEEE Transactions on Robotics and Automation, 15:251–257, 1999.

    Article  Google Scholar 

  • A. Kaplan. The conduct of enquiry. Chandler, San Francisco, 1964.

    Google Scholar 

  • Y Kuwana and H Shimoyama, I; Miura. Steering control of a mobile robot using insect antennae. In IEEE International Conference on Intelligent Robots and Systems, volume 2, pages 530–535, 1995.

    Google Scholar 

  • D. Lambrinos, M. Maris, H. Kobayashi, T. Labhart, R. Pfeifer, and R. Wehner. An autonomous agent navigating with a polarized light compass. Adaptive Behaviour, 6(l):175–206, 1997.

    Google Scholar 

  • D. Lambrinos, R. Möller, T. Labhart, R. Pfeifer, and R. Wehner. A mobile robot employing insect strategies for navigation. Robotics and Autonomous Systems, 30(1–2):39–64, 2000.

    Article  Google Scholar 

  • R. Möller, D. Lambrinos, R. Pfeifer, T. Labhart, and R. Wehner. Modeling ant navigation with an autonomous agent. In R. Pfeifer, B. Blumberg, J.A. Meyer, and S.W. Wilson, editors, From animals to animats 5, Cambridge, Mass., 1998. MIT Press.

    Google Scholar 

  • T.M. Morse, T.C. Ferree, and S.R. Lockery. Robust spatial navigation in a robot inspired by chemotaxis in Caenorrhabditis elegans. Adaptive Behaviour, 6(3/4):393–410, 1998.

    Article  Google Scholar 

  • D.W. Onstad. Population-dynamics theory-the roles of analytical, simulation, and supercomputer models. Ecological Modelling, 43(1–2):111–124, 1988.

    Article  Google Scholar 

  • N. Oreskes, K. Shrader-Frechette, and K. Belitz. Verification, validation and confirmation of numerical models in the earth sciences. Science, 263:641–646, 1994.

    Article  Google Scholar 

  • J-M Pichon, C. Blanes, and N. Franceschini. Visual guidance of a mobile robot equipped with a network of self-motion sensors. In W.J. Wolfe and W.H. Chun, editors, Mobile Robots IV, volume 1195, pages 44–53, Bellingham, 1989. Society of Photo-optical Instrumentation Engineers.

    Google Scholar 

  • R.D. Quinn and K.S. Espenscheid. Control of a hexapod robot using a biologically inspired neural network. In R.D. Beer, R.E. Ritzmann, and T. McKenna, editors, Biological Neural Networks in Invertebrate Neuroethology and Robotics. Academic Press, London, 1993.

    Google Scholar 

  • R.D. Quinn and R.E. Ritzmann. Construction of a hexapod robot with cockroach kinematics benefits both robotics and biology. Connection Science, 10:239–254, 1998.

    Article  Google Scholar 

  • A. Rosenblueth and N. Wiener. The role of models in science. Philosophy of Science, 12(4):316–321, 1945.

    Article  Google Scholar 

  • M Rucci and J Edelman, GM; Wray. Adaptation of orienting behavior: from the barn owl to a robotic system. IEEE Transactions on Robotics and Automation, 15(1):p 96–110, February 1999.

    Article  Google Scholar 

  • F. Saito and T. Fukuda. A first result of the brachiator III-A new brachiation robot modeled on a siamang. In C. Langton and K. Shimohara, editors, Proceedings of ALife V, Cambridge MA, 1996. MIT Press.

    Google Scholar 

  • L.M. Saksida, S.M. Raymond, and D.S. Touretzky. Shaping robot behavior using principles from instrumental conditioning. Robotics and Autonomous Systems, 22(3–4):231–249, 1997.

    Article  Google Scholar 

  • E.L. Schwartz. Introduction. In E.L. Schwartz, editor, Computational Neuroscience. MIT Press, Cambridge, Mass., 1990.

    Google Scholar 

  • T. Shibata and S. Schaal. Robot gaze stabilisation based on mimesis of oculomotor dynamics and vestibulocerebellar learning. Advanced Robotics, 13(3):351–352, 1999.

    Article  Google Scholar 

  • M.V. Srinivasan and S. Venkatesh. From, Living Eyes to Seeing Machines. Oxford University Press, Oxford, 1997.

    Google Scholar 

  • M.V. Srinivasan, J.S. Chahl, K. Weber, and S. Venkatesh. Robot navigation inspired by principles of insect vision. Robotics and Autonomous Systems, 26:203–216, 1999.

    Article  Google Scholar 

  • M.S. Triantafyllou and G.S. Triantafyllou. An efficient swimming machine. Scientific American, 272(March):40–48, 1995.

    Article  Google Scholar 

  • B. Webb. Can robots make good models of biological behaviour? Be havioural and Brain Sciences, 24(6): 1033–1094, 2001.

    Google Scholar 

  • B. Webb and T. Scutt. A simple latency dependent spiking neuron model of cricket phonotaxis. Biological Cybernetics, 82(3):247–269, 2000.

    Article  Google Scholar 

  • J. Weiner. On the practice of ecology. Journal of Ecology, 83(1):153–158, 1995.

    Article  Google Scholar 

  • B. P. Zeigler. Theory of Modelling and Simulation. John Wiley, New York, 1976.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 CISM, Udine

About this chapter

Cite this chapter

Webb, B. (2008). Using robots to model biological behaviour. In: Arena, P. (eds) Dynamical Systems, Wave-Based Computation and Neuro-Inspired Robots. CISM International Centre for Mechanical Sciences, vol 500. Springer, Vienna. https://doi.org/10.1007/978-3-211-78775-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-78775-5_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-78774-8

  • Online ISBN: 978-3-211-78775-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics