Skip to main content

Semisynthetic Derivatives of Epothilones

  • Chapter
  • 649 Accesses

Abstract

Semisynthetic derivatives of natural products traditionally occupy a prominent space in natural-product-based drug discovery (1, 2). As many biologically active natural products exhibit a high degree of structural complexity (3), the chemical derivatization of material isolated from natural sources often represents the only feasible means (or at least the only economically viable approach) to explore structure-activity-relationships (SAR) and to produce analogs with more favorable pharmacokinetic and pharmacological properties than the natural product lead. Examples of clinically important drugs that are semisynthetic derivatives of natural products exist in virtually all disease areas (1, 2); in the treatment of cancer this includes compounds such as etoposide or teniposide (derived from podophyllotoxin) (46), irinotecan and topotecan (derived from camptothecin) (79), or docetaxel (derived from 10-deacetylbaccatin III) (10, 11). Even for taxol (11), which is a natural product (12), the sustained supply of sufficient quantities of material for widespread clinical use could only be secured through the development of a semisynthetic production process from another natural product, namely, 10-deacetylbaccatin III (13). In light of these facts, it is not surprising that semisynthesis approaches have also featured prominently in the elucidation of the SAR for epothilones and in the discovery of a number of clinical development candidates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Butler MS (2004) The Role of Natural Product Chemistry in Drug Discovery. J Nat Prod 67: 2141

    Article  CAS  Google Scholar 

  2. Hamann MT (2003) Enhancing Marine Natural Product Structural Diversity and Bioactivity Through Semisynthesis and Biocatalysis. Curr Pharm Design 9: 879

    Article  CAS  Google Scholar 

  3. Henkel T, Brunne RM, Müller H, Reichel F (1999) Statistical Investigation into the Structural Complementarity of Natural Products and Synthetic Compounds. Angew Chem Int Ed 38: 643

    Article  CAS  Google Scholar 

  4. Kuhn M, Keller-Juslén C, von Wartburg A (1969) Mitosis-inhibiting Natural Substances. XXII. Partial Synthesis of 4′-Demethylepipodophyllotoxin. Helv Chim Acta 52: 944

    Article  CAS  Google Scholar 

  5. Keller-Juslén C, Kuhn M, von Wartburg A, Stähelin H (1971) Mitosis-inhibiting Natural Products. 24. Synthesis and Antimitotic Activity of Glycosidic Lignan Derivatives Related to Podophyllotoxin. J Med Chem 14: 936

    Article  Google Scholar 

  6. You Y (2005) Podophyllotoxin Derivatives: Current Synthetic Approaches for New Anticancer Agents. Curr Pharm Design 11: 1695

    Article  CAS  Google Scholar 

  7. Sawada S, Yokokura T, Miyasaka T (1995) Synthesis and Antitumor Activity of A-ring or E-lactone Modified Water-Soluble Prodrugs of (20S)-Camptothecin, Including Development of Irinotecan Hydrochloride Trihydrate (CPT-11). Curr Pharm Design 1: 113

    CAS  Google Scholar 

  8. Kingsbury WD, Boehm JC, Jakas DR, Holden KG, Hecht SM, Gallagher G, Caranfa MJ, McCabe FL, Faucette L, Johnson RK, Hertzberg RP (1991) Synthesis of Water-Soluble (Aminoalkyl) Camptothecin Analogs: Inhibition of Topoisomerase I and Antitumor Activity. J Med Chem 34: 98

    Article  CAS  Google Scholar 

  9. Mathijssen RHJ, Loos WJ, Verweij J, Sparreboom A (2002) Pharmacology of Topoisomerase I Inhibitors Irinotecan (CPT-11) and Topotecan. Curr Cancer Drug Targets 2: 103

    Article  CAS  Google Scholar 

  10. Guenard D, Gueritte-Voegelein F, Potier P (1993) Taxol and Taxotere: Discovery, Chemistry, and Structure-activity Relationships. Acc Chem Res 26: 160

    Article  CAS  Google Scholar 

  11. Rowinsky EK (1997) The Development and Clinical Utility of the Taxane Class of Antimicrotubule Chemotherapy Agents. Ann Rev Med 48: 35

    Article  Google Scholar 

  12. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant Antitumor Agents. VI. Isolation and Structure of Taxol, a Novel Antileukemic and Antitumor Agent from Taxus brevifolia. J Am Chem Soc 93: 2325

    Article  CAS  Google Scholar 

  13. Holton RA, Biediger RJ, Boatman D (1995) Semisynthesis of Taxol and Taxotere. In: Suffness M (ed.) Taxol: Science and Applications, p. 97. CRC, Boca Raton, FL

    Google Scholar 

  14. Höfle G, Reichenbach H (2005) Epothilone, a Myxobacterial Metabolite with Promising Antitumor Activity. In: Cragg GM, Kingston DGI, Newman DJ (eds.) Anticancer Agents from Natural Products, p. 413. Taylor & Francis, Boca Raton, FL

    Google Scholar 

  15. Arslanian RL, Tang L, Blough S, Ma W, Qiu R-G, Katz L, Carney JR (2002) A New Cytotoxic Epothilone from Modified Polyketide Synthases Heterologously Expressed in Myxococcus xanthus. J Nat Prod 65: 106

    Google Scholar 

  16. Niggemann J, Michaelis K, Frank R, Zander N, Höfle G (2002) Natural Product-derived Building Blocks for Combinatorial Synthesis. Part 1. Fragmentation of Natural Products from Myxobacteria. JCS Perkin Trans: 2490

    Google Scholar 

  17. Borzilleri RM, Zheng X, Schmidt RJ, Johnson JA, Kim SH, DiMarco JD, Fairchild CR, Gougoutas JZ, Lee FYF, Long BH, Vite GD (2000) A Novel Application of a Pd(0)-Catalyzed Nucleophilic Substitution Reaction to the Regio-and Stereoselective Synthesis of Lactam Analogues of the Epothilone Natural Products. J Am Chem Soc 122: 8890

    Article  CAS  Google Scholar 

  18. Vite GD, Borzilleri RM, Kim SH, Regueiro-Ren A, Humphreys WG, Lee FYF (2001) Epothilones A and B: Springboards for Semisynthesis of Promising Antimitotic Agents. In: Ojima I, Vite GD, Altmann K-H (eds.) Anticancer Agents—Frontiers in Cancer Chemotherapy. ACS Symposium series 796. p. 148. American Chemical Society, Washington DC

    Chapter  Google Scholar 

  19. Regueiro-Ren A, Leavitt K, Kim SH, Höfle G, Kiffe M, Gougoutas JZ, DiMarco JD, Lee FYF, Fairchild CR, Long BH, Vite GD (2002) SAR and pH Stability of Cyano-Substituted Epothilones. Org Lett 4: 3815

    Article  CAS  Google Scholar 

  20. Sefkow M, Kiffe M, Schummer D, Höfle G (1998) Oxidative and Reductive Transformations of Epothilone A. Bioorg Med Chem Lett 8: 3025

    Article  CAS  Google Scholar 

  21. Medina JC, Salomon M, Kyler KS (1988) A Mild Method for the Conversion of Alcohols to Methylthiomethyl Ethers. Tetrahedron Lett 29: 3773

    Article  CAS  Google Scholar 

  22. Höfle G, Glaser N, Kiffe M, Hecht H-J, Sasse F, Reichenbach H (1999) N-Oxidation of Epothilone A-C and O-Acyl Rearrangement to C-19-and C21-Substituted Epothilones. Angew Chem Int Ed 38: 1971

    Article  Google Scholar 

  23. Sefkow M, Kiffe M, Höfle G (1998) Derivatization of the C12-C13 Functional Groups of Epothilones A, B and C. Bioorg Med Chem Lett 8: 3031

    Article  CAS  Google Scholar 

  24. Altmann K-H, Bold G, Caravatti G, End N, Flörsheimer A, Guagnano V, O’Reilly T, Wartmann M (2000) Epothilones and Their Analogs—Potential New Weapons in the Fight Against Cancer. Chimia 54: 612

    CAS  Google Scholar 

  25. Regueiro-Ren A, Borzilleri RM, Zheng X, Kim SH, Johnson JA, Fairchild CR, Lee FY, Long BH, Vite GD (2001) Synthesis and Biological Activity of Novel Epothilone Aziridines. Org Lett 3: 2693

    Article  CAS  Google Scholar 

  26. Johnson J, Kim SH, Bifano M, DiMarco J, Fairchild C, Gougoutas J, Lee F, Long B, Tokarski J, Vite GD (2000) Synthesis, Structure Proof, and Biological Activity of Epothilone Cyclopropanes. Org Lett 2: 1537

    Article  CAS  Google Scholar 

  27. Sefkow M, Höfle G (1998) Substitutions at the Thiazole Moiety of Epothilone. Heterocycles 48: 2485

    Article  CAS  Google Scholar 

  28. Huisgen R, Kolbeck W (1965) N-Acyloxyammonium Salts. Tetrahedron Lett 6: 783

    Article  Google Scholar 

  29. Höfle G, Glaser N, Leibold T, Karama U, Sasse F, Steinmetz H (2003) Semisynthesis and Degradation of the Tubulin Inhibitors Epothilone and Tubulysin. Pure Appl Chem 75: 167. See also: Glaser N (2001) Semisynthese Seitenketten-modifizierter Epothilone, Doctoral Thesis, Technical University of Braunschweig.

    Article  Google Scholar 

  30. Borzilleri RM, Vite GD (2003) Epothilones: New Tubulin Polymerization Agents in Preclinical and Clinical Development. Drugs of the Future 27: 1149

    Article  Google Scholar 

  31. Wartmann M, Loretan J, Reuter R, Hattenberger M, Muller M, Vaxelaire J, Maira S-M, Flörsheimer A, O’Reilly T, Nicolaou KC, Altmann K-H (2004) Preclinical Pharmacological Profile of ABJ879, a Novel Epothilone B Analog with Potent and Protracted Anti-tumor Activity. Proc Am Assoc Cancer Res 45: Abstract #5440

    Google Scholar 

  32. Höfle G, Glaser N, Leibold T, Sefkow M (1999) Epothilone A-D and Their Thiazolemodified Analogs as Novel Anticancer Agents. Pure Appl Chem 71: 2019

    Article  Google Scholar 

  33. Karama U, Höfle G (2003) Synthesis of Epothilone 16,17-Alkyne Analogs by Replacement of the C13–C15(O)-Ring Segment of Natural Epothilone C. Eur J Org Chem: 1042

    Google Scholar 

  34. Dong SD, Sundermann K, Smith KMJ, Petryka J, Liu F, Myles DC (2004) Rapid Access to Epothilone Analogs via Semisynthetic Degradation and Reconstruction of Epothilone D. Tetrahedron Lett 45: 1945

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag/Wien

About this chapter

Cite this chapter

Altmann, KH. (2009). Semisynthetic Derivatives of Epothilones. In: The Epothilones: An Outstanding Family of Anti-Tumor Agents. Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, vol 90. Springer, Vienna. https://doi.org/10.1007/978-3-211-78207-1_4

Download citation

Publish with us

Policies and ethics