Skip to main content

Towards the simulation of cavitating flows in inducers through a homogeneous barotropic flow model

  • Chapter

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 496))

Abstract

The present paper describes the starting efforts made for constructing a numerical frame aimed at simulating propellant flows occurring in the feed turbopumps of modern liquid propellant rocket engines. A homogeneous-flow cavitation model, accounting for thermal effects and active nuclei concentration, is considered, which leads to a barotropic state law. The 3D continuity and momentum equations for compressible inviscid flows are discretized by a finite-volume approach, applicable to unstructured grids. The numerical fluxes are computed through a shock-capturing Roe-type upwind scheme, defined for barotropic flows. The accuracy of the proposed method at low Mach numbers is ensured by ad-hoc preconditioning, which only modifies the upwind part of the numerical flux; thus, the time consistency is maintained and the proposed method can also be used for unsteady problems. Time advancing is carried out by an implicit linearized scheme, in which the linearization only exploits the properties of the Roe matrix. Examples of applications are provided for flow configurations of increasing geometric complexity, viz. some 1D validation benchmarks, the flow around a hydrofoil mounted in a tunnel and the flow in a turbo-pump inducer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • T. Barberon and P. Helluy. Finite volume simulation of cavitating flows. Computers & Fluids, 34:832–858, 2005.

    Article  MATH  Google Scholar 

  • F. Beux, M.-V. Salvetti, A. Ignatyev, D. Li, C. Merkle, and E. Sinibaldi. A numerical study of non-cavitating and cavitating liquid flow around a hydrofoil. Mathematical Modelling and Numerical Analysis, 39(3):577–590, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Bilanceri. Studio dell’effetto della legge di stato nella simulazione di un flusso cavitante barotropico. Bsc Thesis in Aerospace Engineering, University of Pisa, Pisa (Italy), a.a. 2005, 2005.

    Google Scholar 

  • C. E. Brennen. Hydrodynamics of Pumps. Concepts ETI Inc. and Oxford University Press, 1994.

    Google Scholar 

  • A. Cervone, L. Torre, C. Bramanti, E. Rapposelli, and L. d’Agostino. Experimental characterization of the cavitation instabilities in the AVIO FAST2 inducer. In Proc. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Tucson (Arizona, USA), July 2005.

    Google Scholar 

  • A. Cervone, C. Bramanti, E. Rapposelli, and L. d’Agostino. Thermal cavitation experiments on a naca 0015 hydrofoil. Journal of Fluids Engineering, Transactions of the ASME, 128(2):326–331, 2006.

    Article  Google Scholar 

  • C.H. Choi, S.-S. Hong, B.J. Cha, and S. Yang. Study on the hydraulic performance of a turbopump inducer. In Proc. ASME FEDSM’03-4th ASME/JSME Joint Fluids Engineering Conference, Honolulu (Hawaii, USA), July 2003.

    Google Scholar 

  • O. Coutier-Delgosha and J.A. Astolfi. Numerical prediction of the cavitating flow on a two-dimensional symmetrical hydrofoil with a single fluid model. In Proc. CAV2003-Fifth International Symposium on Cavitation, Osaka (Japan), November 2003.

    Google Scholar 

  • O. Coutier-Delgosha, J-L. Reboud, and R. Fortes-Patella. Numerical study of the effect of the leading edge shape on cavitation around inducer blade sections. In Proc. CAV2001-Fourth International Symposium on Cavitation, Pasadena (California, USA), June 2001.

    Google Scholar 

  • O. Coutier-Delgosha, R. Fortes-Patella, J-L. Reboud, N. Hakimi, and C. Hirsch. Stability of preconditioned Navier-Stokes equations associated with a cavitation model. Computers & Fluids, 34:319–349, 2005a.

    Article  MATH  Google Scholar 

  • O. Coutier-Delgosha, R. Fortes-Patella, J. L. Reboud, N. Hakimi, and C. Hirsch. Numerical simulation of cavitating flow in 2D and 3D inducer geometries. International Journal for Numerical Methods in Fluids, 48:135–167, 2005b.

    Article  MATH  Google Scholar 

  • O. Coutier-Delgosha, P. Morel, R. Fortes-Patella, and J. L. Reboud. Numerical simulation of turbopump inducer cavitating behavior. International Journal of Rotating Machinery, 2:135–142, 2005c.

    Article  Google Scholar 

  • L. d’Agostino and E. Rapposelli. A modified bubbly isenthalpic model for numerical simulation of cavitating flows. AIAA paper 2001-3402, 2001.

    Google Scholar 

  • C. Farhat, B. Koobus, and H. Tran. Simulation of vortex shedding dominated flows past rigid and flexible structures. In Computational Methods for Fluid-Structure Interaction, pages 1–30. Tapir, 1999.

    Google Scholar 

  • L. Fezoui and B. Stoufflet. A class of implicit upwind schemes for Euler simulations with unstructured meshes. Journal of Computational Physics, 84:174–206, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  • H. Guillard and C. Viozat. On the behaviour of upwind schemes in the low Mach number limit. Computers & Fluids, 28:63–86, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  • H.W.M. Hoeijmakers, M.E. Janssens, and W. Kwan. Numerical simulation of sheet cavitation. In Proc. Third International Symposium on Cavitation, Grenoble (France), April 1998.

    Google Scholar 

  • A. Hosangadi, V. Ahuja, and R.J. Ungewitter. Simulations of cavitating flows in turbopumps. AIAA paper 2003-1261, 2003.

    Google Scholar 

  • A. Hosangadi, V. Ahuja, and R.J. Ungewitter. Simulations of cavitating cryogenic inducers. AIAA paper 2004-4023, 2004.

    Google Scholar 

  • M. Ishii. Thermo-fluid Dynamic Theory of Two-Phase Flow. Eyrolles, 1975.

    Google Scholar 

  • M.E. Janssens, S.J. Hulshoff, and H.W.M. Hoeijmakers. Calculation of unsteady attached cavitation. AIAA paper 97-1936, 1997.

    Google Scholar 

  • K.C. Karki and S.V. Patankar. Pressure based calculation procedure for viscous flows at all speed in arbitrary configurations. AIAA Journal, 27(9):1167–1174, 1989.

    Article  Google Scholar 

  • R. F. Kunz, D. A. Boger, D. R. Stinebring, T. S. Chyczewski, J. W. Lindau, H. J. Gibeling, S. Venkateswaran, and T. R. Govindan. A preconditioned Navier-Stokes method for two-phase flows application to cavitation prediction. Computers & Fluids, 29:849–875, 2000.

    Article  MATH  Google Scholar 

  • J.J. Mc-Guirck and Page G.J. Shock-capturing using a pressure correction method. AIAA Journal, 28(10):1751–1757, 1990.

    Article  Google Scholar 

  • C. L. Merkle, J. Feng, and P. E. O. Buelow. Computational modeling of the dynamics of sheet cavitation. In Proc. Third International Symposium on Cavitation, Grenoble (France), April 1998.

    Google Scholar 

  • B. Pouffary, R. Fortes-Patella, and J-L Reboud. Numerical simulation of cavitating flow around a 2D hydrofoil: a barotropic approach. In Proc. CAV2003-Fifth International Symposium on Cavitation, Osaka (Japan), November 2003.

    Google Scholar 

  • Q. Qin, C. C. S. Song, and R.E.A. Arndt. A virtual single-phase natural cavitation model and its application to CAV2003 hydrofoil. In Proc. CAV2003-Fifth International Symposium on Cavitation, Osaka (Japan), November 2003.

    Google Scholar 

  • J-L. Reboud, B. Stutz, and O. Coutier. Two-phase flow structure of cavitation: experiment and modelling of unsteady effects. In Proc. Third International Symposium on Cavitation, Grenoble (France), April 1998.

    Google Scholar 

  • P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43:357–372, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  • Y. Saito, I. Nakamori, and T. Ikohagi. Numerical analysis of unsteady vaporous cavitating flow around a hydrofoil. In Proc. CAV2003-Fifth International Symposium on Cavitation, Osaka (Japan), November 2003.

    Google Scholar 

  • I. Senocak and W. Shyy. A pressure-based method for turbolent cavitating flow computations. Journal of Computational Physics, 176:363–383, 2002.

    Article  MATH  Google Scholar 

  • W. Shyy, J. Wu, and Y. Utturkar. Computational modeling of cavitation for liquid rocket applications. AIAA paper 2004-3985, 2004.

    Google Scholar 

  • E Sinibaldi. Implicit preconditioned numerical schemes for the simulation of three-dimensional barotropic flows. Edizioni della Normale, 2007. In Press.

    Google Scholar 

  • E. Sinibaldi, F. Beux, and M.V. Salvetti. A preconditioned implicit Roe scheme for barotropic flows: towards simulation of cavitation phenomena. Rapport de recherche 4891, INRIA, 2003.

    Google Scholar 

  • E. Sinibaldi, F. Beux, and M.V. Salvetti. A preconditioned compressible flow solver for numerical simulation of 3D cavitation phenomena. In Proc. ECCOMAS2004, Jyväskylä (Finland), July 2004.

    Google Scholar 

  • C. C. S. Song and J. He. Numerical simulation of cavitating flows by single-phase flow approach. In Proc. Third International Symposium on Cavitation, Grenoble (France), April 1998.

    Google Scholar 

  • E. F. Toro. Riemann solvers and numerical methods for fluid dynamics. Springer, 1997.

    Google Scholar 

  • E. Turkel. Preconditioned methods for solving the incompressible and low speed compressible equations. Journal of Computational Physics, 72:277–298, 1987.

    Article  MATH  Google Scholar 

  • E. Turkel, A. Fiterman, and B. van Leer. Frontiers of Computational Fluid Dynamics, chapter Preconditioning and the limit of the compressible to the incompressible flow equations for finite difference schemes., pages 215–234. Chichester, Wiley, 1994.

    Google Scholar 

  • D. R. van der Heul, C. Vuik, and P. Wesseling. A staggered scheme for hyperbolic conservation laws applied to unsteady sheet cavitation. Computing and Visualization in Science, 2:63–68, 1999.

    Article  MATH  Google Scholar 

  • D. R. van der Heul, C. Vuik, and P. Wesseling. Efficient computation of flow with cavitation by compressible pressure correction. In Proc. ECCOMAS 2000, Barcelona (Spain), September 2000.

    Google Scholar 

  • C. Viozat. Implicit upwind schemes for low mach number compressible flows. Technical Report RR-3084, INRIA, 1997.

    Google Scholar 

  • J. Wu, Y. Utturkar, and W. Shyy. Assessment of modeling strategies for cavitating flow around a hydrofoil. In Proc. CAV2003-Fifth International Symposium on Cavitation, Osaka (Japan), November 2003.

    Google Scholar 

  • T. Y. Wu. Cavity and wake flows. Annual Review of Fluid Mechanics, 3:243–284, 1972.

    Article  Google Scholar 

  • H. Yamada, S. Hasegawa, M. Watanabe, T. Hashimoto, T. Kimura, J. Takita, and I. Kubota. Observation of the inner flow in the inducer. In Proc. 9th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu (Hawaii, USA), February 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 CISM, Udine

About this chapter

Cite this chapter

Salvetti, MV., Sinibaldi, E., Beux, F. (2007). Towards the simulation of cavitating flows in inducers through a homogeneous barotropic flow model. In: d’Agostino, L., Salvetti, M.V. (eds) Fluid Dynamics of Cavitation and Cavitating Turbopumps. CISM International Centre for Mechanical Sciences, vol 496. Springer, Vienna. https://doi.org/10.1007/978-3-211-76669-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-76669-9_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-76668-2

  • Online ISBN: 978-3-211-76669-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics