Skip to main content

The Rayleigh-Plesset equation: a simple and powerful tool to understand various aspects of cavitation

  • Chapter

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 496))

Abstract

This chapter is a general introduction to cavitation. Various features of cavitating flows are analyzed on the basis of the Rayleigh-Plesset equation. They concern not only the simple configuration of a single spherical bubble but also complex cavitating flows as those observed in cavitating turbopumps. Scaling rules, erosive potential, thermodynamic effect, supercavitation, traveling bubble cavitation, cavitation modeling are some of the topics addressed here. They are examined through this simple, basic equation which proves to be a quite useful tool for a first approach of real cavitation problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Arndt R.E.A. (2002) Cavitation in vertical flows. Annu. Rev. Fluid Mech. 34 143–175

    Article  MathSciNet  Google Scholar 

  • Blake J.R. and Gibson D.C. (1987) Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19 99–128

    Article  Google Scholar 

  • Brennen C.E. (1995) Cavitation and bubble dynamics. Oxford University Press

    Google Scholar 

  • Chahine G.L. and Genoux P.F. (1983) Collapse of a cavitating vortex ring. J. Fluids Eng. 105 400–405

    Article  Google Scholar 

  • Escaler X., Farhat M., Avellan F. and Egusquiza E. (2003) Cavitation erosion tests on a 2D hydrofoil using surface-mounted obstacles. Wear 254 441–449

    Article  Google Scholar 

  • Franc J.-P. and Michel J.-M. (2004) Fundamentals of Cavitation. Kluwer

    Google Scholar 

  • Fruman D.H., Reboud J.L. and Stutz B. (1999) Estimation of the thermal effects in cavitation of thermosensible liquids. Int. J. Heat and Mass Transfer 42 3195–3204

    Article  MATH  Google Scholar 

  • Fujikawa S. and Akamatsu T. (1980) Effects of non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid. J. Fluid Mech. 97 part 3 481–512

    Article  MATH  Google Scholar 

  • Garabedian P.R. (1956) Calculation of axially symmetric cavities and jets. Pac. J. Math. 6 611–684

    MATH  MathSciNet  Google Scholar 

  • Gopalan S. and Katz J. (2000) Flow structure and modeling issues in the closure region of attached cavitation. Physics of Fluids 12 No.4 895–911

    Article  MATH  Google Scholar 

  • Kato H., Konno A., Maeda M. and Yamaguchi H. (1996) Possibility of quantitative prediction of cavitation erosion without model test. J. Fluids Eng. 118 582–588.

    Article  Google Scholar 

  • Knapp R.T., Daily J.W. and Hammitt F.G. (1970) Cavitation. McGraw-Hill

    Google Scholar 

  • Kubota A., Kato H. and Yamaguchi H. (1992) A new modeling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section. J. Fluid Mech. 240 59–96.

    Article  Google Scholar 

  • Lecoffre Y. (1995) Cavitation erosion, hydrodynamics scaling laws, practical method of long term damage prediction. Proc. Int. Symp. on Cavitation Deauville (France) 249–256

    Google Scholar 

  • Leighton T.G. (1994) The acoustic bubble. Academic Press

    Google Scholar 

  • Lindau O. and Lauterborn W. (2003) Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J. Fluid Mech. 479 327–348

    Article  MATH  Google Scholar 

  • Logvinovich G.V. (1969) Hydrodynamics of free surface flows (in Russian). Nauvoka Dunka Ed. Kiev

    Google Scholar 

  • Pellone C., Franc J.-P. and Perrin M. (2004) Modelling of unsteady 2D cavity flows using the Logvinovich independence principle. C.R. Mécanique 332 827–833.

    Google Scholar 

  • Plesset M.S. (1949) The dynamics of cavitation bubbles. J. Appl. Mech. 16 277 sq.

    Google Scholar 

  • Prosperetti A. (2004) Bubbles. Physics of Fluids 16 No.6 1852–1865

    Article  MathSciNet  Google Scholar 

  • Rayleigh (Lord) (1917) The pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag. 34 94 sq.

    Google Scholar 

  • Serebryakov V.V. (1972) The annular model for calculation of axisymmetric cavity flows (in Russian). Hydromechanics Nauvoka Dunka Ed. Kiev 27 25–29

    Google Scholar 

  • Tomita Y., Robinson P.B., Tong R.P. and Blake J.R. (2002) Growth and collapse of cavitation bubbles near a curved rigid boundary. J. Fluid Mech. 466 259–283

    Article  MATH  Google Scholar 

  • Trevena D.H. (1987) Cavitation and tension in liquids. Adam Hilger

    Google Scholar 

  • Young F.R. (1989) Cavitation. McGraw-Hill

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 CISM, Udine

About this chapter

Cite this chapter

Franc, JP. (2007). The Rayleigh-Plesset equation: a simple and powerful tool to understand various aspects of cavitation. In: d’Agostino, L., Salvetti, M.V. (eds) Fluid Dynamics of Cavitation and Cavitating Turbopumps. CISM International Centre for Mechanical Sciences, vol 496. Springer, Vienna. https://doi.org/10.1007/978-3-211-76669-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-76669-9_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-76668-2

  • Online ISBN: 978-3-211-76669-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics