Advertisement

Vehicle and Guideway Modelling: Suspensions Systems

  • Werner Schiehlen
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 497)

Abstract

Performance, safety and comfort of a vehicle are related to its low frequency motions. The corresponding mechanical models are characterized for all kinds of vehicles by stiff parts represented as rigid bodies and soft components like springs, dampers and actuators. The method of multibody systems is most appropriate for the analysis of vehicle motions and vibrations up to 50 Hz. In this contribution the derivation of the equations of motions of multibody systems is shown step by step up to the computer-aided evaluation of these equations.

Starting with kinematics for rigid body vehicle systems, the foundations of dynamics together with the principles of d’Alembert and Jourdain are used to get the equations of motion. Then, some aspects of multibody dynamics formalisms and computer codes for vehicle dynamics are discussed. Further, models of randomly uneven guideways are presented. Performance criteria for ride comfort and safety are considered. Finally, the analysis of the suspension of a car model is presented in detail.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. VDI Richtlinie 2057. Beurteilung der Einwirkung mechanischer Schwingungen auf den Menschen. Düsseldorf, 1975–1979.Google Scholar
  2. ISO International Standard 2631. Guide for the Human Exposure to Whole-Body Vibrations, 1974.Google Scholar
  3. D.S. Bae and E.J. Haug. A recursive formulation for constrained mechanical system dynamics: Part i, open loop systems. Mechanics of Structures and Machines, 15: 359–382, 1987a.CrossRefGoogle Scholar
  4. D.S. Bae and E.J. Haug. A recursive formulation for constrained mechanical system dynamics: Part ii, closed loop systems. Mechanics of Structures and Machines, 15: 481–506, 1987b.CrossRefGoogle Scholar
  5. V. Bormann. Messungen von Fahrbahnunebenheiten paralleler Fahrspuren und Anwendung der Ergebnisse. Vehicle System Dynamics, 7, 1978.Google Scholar
  6. H. Brandl, R. Johanni, and M. Otter. A very efficient algorithm for the simulation of robots and similar multibody systems without inversion of the mass matrix. In P. Kopacek, I. Troch, and K. Desoyer, editors, Theory of Robots, pages 95–100. Pergamon, Oxford, 1988.Google Scholar
  7. H. Braun. Untersuchung von Fahrbahnunebenheiten und Anwendung der Ergebnisse. Dr.-Ing. Diss, Braunschweig, 1969.Google Scholar
  8. S.H. Crandall and W.D. Mark. Random Vibration in Mechanical Systems. Academic Press, New York, London, 1963.Google Scholar
  9. L. Czerny. Analyse stationärer Zufallsschwingungen. In Fort. Ber. VDI-Reihe 11 Nr. 99, Düsseldorf, 1987. VDI-Verlag.Google Scholar
  10. C.J. Dodds and J.D. Robson. The description of road surface roughness. J. Sound Vibrations, 31:175–183, 1973.zbMATHCrossRefGoogle Scholar
  11. W. Heinrich and K. Hennig. Zufallsschwingungen mechanischer Systeme. Vieweg, Braunschweig, 1978.zbMATHGoogle Scholar
  12. J.M. Hollerbach. A recursive lagrangian formulation of manipulator dynamics and comparative study of dynamics formulation complexity. IEEE Trans. Syst. Man. Cybern., 11:730–736, 1980.CrossRefMathSciNetGoogle Scholar
  13. T.R. Kane and D.A. Levinson. Dynamics: Theory and Applications. McGraw Hill, New York, 1985.Google Scholar
  14. G. Kreisselmeier. A solution of the bilinear matrix equation AY + YB =-Q. SIAM J. Appl. Math., 23:334–338, 1972.zbMATHCrossRefMathSciNetGoogle Scholar
  15. E. Kreuzer and G. Leister. Programmsystem NEWEUL’90. In Anleitung AN-24, Stuttgart, 1991. Institut für Technische und Numerische Mechanik.Google Scholar
  16. K. Magnus and H.H. Müller. Grundlagen der Technischen Mechanik. Teubner, Wiesbaden, 1990.Google Scholar
  17. M. Mitschke. Dynamik der Fahrzeuge. Springer, Berlin, 1972.Google Scholar
  18. P.C. Müller and K. Popp. Kovarianzanalyse von linearen Zufallsschwingungen mit zeitlich verschobenen Erregerprozessen. Z. angew. Math. Mech., 59:T144–T146, 1979.CrossRefGoogle Scholar
  19. P.C. Müller and W. Schiehlen. Linear Vibrations. Martinus Nijhoff, Dordrecht, 1985.zbMATHGoogle Scholar
  20. P.C. Müller, K. Popp, and W.O. Schiehlen. Berechnungsverfahren für stochastische Fahrzeugschwingungen. Ing. Arch., 49:235–254, 1980.zbMATHCrossRefGoogle Scholar
  21. D.E. Newland. Random Vibrations and Spectral Analysis. Longmann, New York, London, 1975.Google Scholar
  22. G. Rill. Instationäre Fahrzeugschwingungen bei stochastischer Erregung. Dr.-Ing Diss, Stuttgart, 1983.Google Scholar
  23. G. Rill. Auswahl eines geeigneten Integrationsverfahren für nichtlineare Bewegungsgleichungen bei Erregung durch beliebige Zeitfunktionen. In Forschungsbericht FB-4, Stuttgart, 1981. Institut für Technische und Numerische Mechanik.Google Scholar
  24. S.K. Saha and W. Schiehlen. Recursive kinematics and dynamics for parallel structural closed-loop multibody systems. Mechanics of Structures and Machines, 29:143–175, 2001.CrossRefGoogle Scholar
  25. W. Schiehlen, editor. Multibody System Handbook. Springer, Berlin, 1990.Google Scholar
  26. W. Schiehlen. Computational aspects in multibody system dynamics. Comp. Meth. Appl. Mech. Eng., 90:569–582, 1991.CrossRefGoogle Scholar
  27. W. Schiehlen and P. Eberhard. Technische Dynamik. Teubner, Wiesbaden, 2004.zbMATHGoogle Scholar
  28. L.F. Shampine and M.K. Gordon. Computer Solution of Ordinary Differential Equations. Freeman, San Francisco, 1984. Vieweg, Braunschweig, 1984.Google Scholar
  29. R.A. Smith. Matrix equation XA + BX = C. SIAM J. Appl. Math., 16:198–201, 1968.zbMATHCrossRefMathSciNetGoogle Scholar
  30. C. Voy. Die Simulation vertikaler Fahrzeugschwingungn. In Fort. Ber. VDI Reihe 12 Nr.30, Düsseldorf, 1978. VDI-Verlag.Google Scholar

Copyright information

© CISM, Udine 2009

Authors and Affiliations

  • Werner Schiehlen
    • 1
  1. 1.Institute of Engineering and Computational MechanicsUniversity of StuttgartGermany

Personalised recommendations