Skip to main content

Arfs and Arls: models for Arf family members in membrane traffic at the Golgi

  • Chapter
The Golgi Apparatus
  • 1387 Accesses

Abstract

The ADP-ribosylation factor (Arf) family GTPases are highly conserved ~20 kDa GTP-binding proteins that play a number of roles in the regulation of cellular physiology, most relevant here is that they act to recruit soluble proteins to a membrane surface and coordinate the assembly of multi-protein complexes that are required for the biogenesis of nascent carriers of mem- brane traffic. The Arfs can also recruit and directly activate lipid-modifying enzymes, providing important functional links between localized changes in lipid composition and protein assemblies. The Arf family GTPases and their interactions have been the subject of a recent book (Kahn 2004) and reviews (Gillingham and Munro 2007; Inoue and Randazzo 2007). Molecular aspects of Arf family members acting at the Golgi and models for their actions are summarized in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altan-Bonnet N, Phair RD, Polishchuk RS, Weigert R, Lippincott-Schwartz J (2003) A role for Arf1 in mitotic Golgi disassembly, chromosome segregation, and cytokinesis. Proc Natl Acad Sci USA 100: 13314–13319

    PubMed  CAS  Google Scholar 

  • Ames JB, Ishima R, TanakaT, Gordon JI, Stryer L, Ikura M (1997) Molecular mechanics of calcium-myristoyl switches. Nature 389: 198–202

    PubMed  CAS  Google Scholar 

  • Antoshechkin I, Han M (2002) The C. elegans evl-20 gene is a homolog of the small GTPase ARL2 and regulates cytoskeleton dynamics during cytokinesis and morphogenesis. Dev Cell 2: 579–591

    PubMed  CAS  Google Scholar 

  • Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S, Salama N, Rexach MF, Ravazzola M, Amherdt M, Schekman R (1994) COPII:a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77: 895–907

    PubMed  CAS  Google Scholar 

  • Behnia R, Panic B, Whyte JR, Munro S (2004) Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1 p. Nat Cell Biol 6: 405–413

    PubMed  CAS  Google Scholar 

  • Bhamidipati A, Lewis SA, Cowan NJ (2000) ADP ribosylation factor-like protein 2 (Arl2) regulates the interaction of tubulin-folding cofactor D with native tubulin. J Cell Biol 149: 1087–1096

    PubMed  CAS  Google Scholar 

  • Bigay J, Casella JF, Drin G, Mesmin B, Antonny B (2005) ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. EMBO J 24: 2244–2253

    PubMed  CAS  Google Scholar 

  • Bigay J, Gounon P, Robineau S, Antonny B (2003) Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426: 563–566

    PubMed  CAS  Google Scholar 

  • Boman AL, Zhang C, Zhu X, Kahn RA (2000) Afamily of ADP-ribosylation factor effectors that can alter membrane transport through the trans-Golgi. Mol Biol Cell 11: 1241–1255

    PubMed  CAS  Google Scholar 

  • Brown HA, Gutowski S, Moomaw CR, Slaughter C, Sternweis PC (1993) ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity [see comments]. Cell 75: 1137–1144

    PubMed  CAS  Google Scholar 

  • Brown MT, Andrade J, Radhakrishna H, Donaldson JG, Cooper JA, Randazzo PA (1998) ASAP1, a phospholipid-dependent arf GTPase-activating protein that associates with and is phosphorylated by Src. Mol Cell Biol 18: 7038–7051

    PubMed  CAS  Google Scholar 

  • Burd CG, Strochlic TI, Gangi Setty SR (2004) Arf-like GTPases: not so Arf-like after all. Trends Cell Biol 14: 687–694

    PubMed  CAS  Google Scholar 

  • Burguete AS, Fenn TD, Brunger AT, Pfeffer SR (2008) Rab and Arl GTPase family members cooperate in the localization of the golgin GCC185. Cell 132: 286–298

    PubMed  CAS  Google Scholar 

  • Casanova JE (2007) Regulation of Arf activation: the Sec7 family of guanine nucleotide exchange factors. Traffic 8: 1476–1485

    PubMed  CAS  Google Scholar 

  • Caspary T, Larkins CE, Anderson KV (2007) The graded response to Sonic Hedgehog depends on cilia architecture. Dev Cell 12: 767–778

    PubMed  CAS  Google Scholar 

  • Chiang AP, Nishimura D, Searby C, Elbedour K, Carmi R, Ferguson AL, Secrist J, Braun T, Casavant T, Stone EM, Sheffield VC (2004) Comparative genomic analysis identifies an ADP-ribosylation factor-like gene as the cause of Bardet-Biedl syndrome (BBS3). Am J Hum Genet 75: 475–484

    PubMed  CAS  Google Scholar 

  • Cockcroft S, Thomas GM, Fensome A, Geny B, Cunningham E, Gout I, Hiles I, Totty NF, Truong O, Hsuan JJ (1994) Phospholipase D: a downstream effector of ARF in granulocytes. Science 263: 523–526

    PubMed  CAS  Google Scholar 

  • De Matteis MA, Di Campli A, Godi A (2005) The role of the phosphoinositides at the Golgi complex. Biochim Biophys Acta 1744: 396–405

    PubMed  Google Scholar 

  • Dell’Angelica EC, Mullins C, Bonifacino JS (1999) AP-4, a novel protein complex related to clathrin adaptors. J Biol Chem 274: 7278–7285

    PubMed  CAS  Google Scholar 

  • Dell’Angelica EC, Puertollano R, Mullins C, Aguilar RC, Vargas JD, Hartnell LM, Bonifacino JS (2000) GGAs: a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J Cell Biol 149: 81–94

    PubMed  CAS  Google Scholar 

  • Derby MC, Lieu ZZ, Brown D, Stow JL, Goud B, Gleeson PA (2007) The trans-Golgi network golgin, GCC185, is required for endosome-to-Golgi transport and maintenance of Golgi structure. Traffic 8: 758–773

    PubMed  CAS  Google Scholar 

  • Derby MC, Van Vliet C, Brown D, Luke MR, Lu L, Hong W, Stow JL, Gleeson PA (2004) Mammalian GRIP domain proteins differ in their membrane binding properties and are recruited to distinct domains of the TGN. J Cell Sci 117: 5865–5874

    PubMed  CAS  Google Scholar 

  • Donaldson JG, Finazzi D, Klausner RD (1992) Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. Nature 360: 350–352

    PubMed  CAS  Google Scholar 

  • Donaldson JG, Kahn RA, Lippincott-Schwartz J, Klausner RD (1991) Binding of ARF and beta-COP to Golgi membranes: possible regulation by a trimeric G protein. Science 254:1197–1199

    PubMed  CAS  Google Scholar 

  • Dong JH, Wen JF, Tian HF (2007) Homologs of eukaryotic Ras superfamily proteins in prokaryotes and their novel phylogenetic correlation with their eukaryotic analogs. Gene 396: 116–124

    PubMed  CAS  Google Scholar 

  • Drake MT, Zhu Y, Kornfeld S (2000) The assembly of AP-3 adaptor complex-containing clathrin-coated vesicles on synthetic liposomes. Mol Biol Cell 11: 3723–3736

    PubMed  CAS  Google Scholar 

  • Fan Y, Esmail MA, Ansley SJ, Blacque OE, Boroevich K, Ross AJ, Moore SJ, Badano JL, May-Simera H, Compton DS, Green JS, Lewis RA, Van Haelst MM, Parfrey PS, Baillie DL, Beales PL, Katsanis N, Davidson WS, Leroux MR (2004) Mutations in a member of the Ras superfamily of small GTP-binding proteins causes Bardet-Biedl syndrome. Nat Genet 36: 989–993

    PubMed  CAS  Google Scholar 

  • Faundez V, Horng JT, Kelly RB (1998) A function for the AP3 coat complex in synaptic vesicle formation from endosomes. Cell 93: 423–432

    PubMed  CAS  Google Scholar 

  • Faundez VV, Kelly RB (2000) The AP-3 complex required for endosomal synaptic vesicle biogenesis is associated with a casein kinase ia lpha-l ike isoform [In Process Citation]. Mol Biol Cell 11:2591–2604

    PubMed  CAS  Google Scholar 

  • Franco M, Chardin P, Chabre M, Paris S (1996) Myristoylation-facilitated binding of the G protein ARF1GDP to membrane phospholipids is required for its activation by a soluble nucleotide exchange factor. J Biol Chem 271: 1573–1578

    PubMed  CAS  Google Scholar 

  • Fujiwara T, Oda K, Yokota S, Takatsuki A, Ikehara Y (1988) Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J Biol Chem 263: 18545–18552

    PubMed  CAS  Google Scholar 

  • Gillingham AK, Munro S (2007) The small G proteins of the Arf family and their regulators. Annu Rev Cell Dev Biol 23: 579–611

    PubMed  CAS  Google Scholar 

  • Godi A, Di Campli A, Konstantakopoulos A, Di Tullio G, Alessi DR, Kular GS, Daniele T, Marra P, Lucocq JM, De Matteis MA (2004) FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat Cell Biol 6: 393–404

    PubMed  CAS  Google Scholar 

  • Godi A, Pertile P, Meyers R, Marra P, Di Tullio G, Iurisci C, Luini A, Corda D, De Matteis MA (1999) ARF mediates recruitment of PtdIns-4-OH kinase-beta and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex [see comments]. Nat Cell Biol 1:280–287

    PubMed  CAS  Google Scholar 

  • Goldberg J (1998) Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 95: 237–248

    PubMed  CAS  Google Scholar 

  • Goldberg J (2000) Decoding of sorting signals by coatomer through a GTPase switch in the COPI coat complex. Cell 100: 671–679

    PubMed  CAS  Google Scholar 

  • Hill K, Li Y, Bennett M, McKay M, Zhu X, Shern J, Torre E, LahJJ, Levey AI, Kahn RA (2003) Munc 18 interacting proteins: ADP-ribosylation factor-dependent coat proteins that regulate the traffic of beta-Alzheimer’s precursor protein. J Biol Chem 278: 36032–36040

    PubMed  CAS  Google Scholar 

  • Hirst J, Bright NA, Rous B, Robinson MS (1999) Characterization of a fourth adaptor-related protein complex [In Process Citation]. Mol Biol Cell 10: 2787–2802

    PubMed  CAS  Google Scholar 

  • Hirst J, Lindsay MR, Robinson MS (2001) GGAs: roles of the different domains and comparison with AP-1 and clathrin. Mol Biol Cell 12: 3573–3588

    PubMed  CAS  Google Scholar 

  • Honda A, Nogami M, Yokozeki T, Yamazaki M, Nakamura H, Watanabe H, Kawamoto K, Nakayama K, Morris AJ, Frohman MA, Kanaho Y (1999) Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99: 521–532

    PubMed  CAS  Google Scholar 

  • Hoyt MA, Stearns T, Botstein D (1990) Chromosome instability mutants of Saccharomyces cerevisiae that are defective in microtubule-mediated processes. Mol Cell Biol 10:223–234

    PubMed  CAS  Google Scholar 

  • Icard-Liepkalns C, Ravassard P, Liepkalns VA, Chatail F, Mallet J (1997) An ADP-ribosyla-tion-factor(ARF)-like protein involved in regulated secretion. Eur J Biochem 246: 388–393

    PubMed  CAS  Google Scholar 

  • Inoue H, Randazzo PA (2007) Arf GAPs and their interacting proteins. Traffic 8:1465–1475

    PubMed  CAS  Google Scholar 

  • Jones DH, Morris JB, Morgan CP, Kondo H, Irvine RF, Cockcroft S (2000) Type I phosphatidylinositol 4-phosphate 5-kinase directly interacts with ADP-ribosylation factor 1 and is responsible for phosphatidylinositol 4,5-bisphosphate synthesis in the Golgi compartment. J Biol Chem 275: 13962–13966

    PubMed  CAS  Google Scholar 

  • Kahn RA (2004) ARF family GTPases. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Kahn RA, Cherfils J, Elias M, Lovering RC, Munro S, Schurmann A (2006) Nomenclature for the human Arf family of GTP-binding proteins: ARF, ARL, and SAR proteins. J Cell Biol 172: 645–650

    PubMed  CAS  Google Scholar 

  • Kahn RA, Gilman AG (1986) The protein cof actor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein. J Biol Chem 261: 7906–7911

    PubMed  CAS  Google Scholar 

  • Kahn RA, Goddard C, Newkirk M (1988) Chemical and immunological characterization of the 21-kDa ADP-ribosylation factor of adenylate cyclase. J Biol Chem 263: 8282–8287

    PubMed  CAS  Google Scholar 

  • Kahn RA, Kern FG, Clark J, Gelmann EP, Rulka C(1991) Human ADP-ribosylation factors. A functionally conserved family of GTP-binding proteins. J Biol Chem 266: 2606–2614

    PubMed  CAS  Google Scholar 

  • Kahn RA, Randazzo P, Serafini T, Weiss O, Rulka C, Clark J, Amherdt M, Roller P, Orci L, Rothman JE (1992) The amino terminus of ADP-ribosylation factor (ARF) is a critical determinant of ARF activities and is a potent and specific inhibitor of protein transport. J Biol Chem 267: 13039–13046

    PubMed  CAS  Google Scholar 

  • Kam JL, Miura K, Jackson TR, Gruschus J, Roller P, Stauffer S, Clark J, Aneja R, Randazzo PA (2000) Phosphoinositide-dependent activation of the ADP-ribosylation factor GTPase-activating protein ASAP1. Evidence for the pleckstrin homology domain functioning as an allosteric site. J Biol Chem 275: 9653–9663

    PubMed  CAS  Google Scholar 

  • Kirchhausen T, Bonifacino JS, Riezman H (1997) Linking cargo to vesicle formation: receptor tail interactions with coat proteins. Curr Opin Cell Biol 9: 488–495

    PubMed  CAS  Google Scholar 

  • Krauss M, Kinuta M, Wenk MR, De Camilli P, Takei K, Haucke V (2003) ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinosiol phosphate kinase type I gamma. J Cell Biol 162: 113–124

    PubMed  CAS  Google Scholar 

  • Ktistakis NT, Brown HA, Sternweis PC, Roth MG (1995) Phospholipase D is present on Golgi-enriched membranes and its activation by ADP ribosylation factor is sensitive to brefeldin A. Proc Natl Acad Sci USA 92: 4952–4956

    PubMed  CAS  Google Scholar 

  • Ktistakis NT, Brown HA, Waters MG, Sternweis PC, Roth MG (1996) Evidence that phospholipase D mediates ADP ribosylation factor-dependent formation of Golgi coated vesicles. J Cell Biol 134: 295–306

    PubMed  CAS  Google Scholar 

  • Kuge O, Dascher C, Orci L, Rowe T, Amherdt M, Plutner H, Ravazzola M, Tanigawa G, Rothman JE, Balch WE (1994) Sar1 promotes vesicle budding from the endoplasmic reticulum but not Golgi compartments. J Cell Biol 125: 51–65

    PubMed  CAS  Google Scholar 

  • Lee FJ, Huang CF, Yu WL, Buu LM, Lin CY, Huang MC, Moss J, Vaughan M (1997) Characterization of an ADP-ribosylation factor-like 1 protein in Saccharomyces cerevisiae. J Biol Chem 272: 30998–31005

    PubMed  CAS  Google Scholar 

  • Lee FJ, Moss J, Vaughan M (1992) Human and Giardia ADP-ribosylation factors (ARFs) complement ARF function in Saccharomyces cerevisiae. J Biol Chem 267: 24441–24445

    PubMed  CAS  Google Scholar 

  • Lee I, Doray B, Govero J, Kornfeld S (2008) Binding of cargo sorting signals to AP-1 enhances its association with ADP ribosylation factor 1-GTP. J Cell Biol: jcb.200709037

    Google Scholar 

  • Lee MC, Orci L, Hamamoto S, Futai E, Ravazzola M, Schekman R(2005)Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 122:605–617

    PubMed  CAS  Google Scholar 

  • Li Y, Kelly WG, Logsdon JM Jr, Schurko AM, Harfe BD, Hill-Harfe KL, Kahn RA (2004) Functional genomic analysis of the ADP-ribosylation factor family of GTPases: phylogeny among diverse eukaryotes and function in C. elegans. FASEB J 18: 1834–1850

    PubMed  CAS  Google Scholar 

  • Lippincott-Schwartz J, Yuan LC, Bonifacino JS, Klausner RD (1989) Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell 56: 801–813

    PubMed  CAS  Google Scholar 

  • Liu YW, Huang CF, Huang KB, Lee FJ (2005) Role for Gcs1 p in regulation of Arl1 p at trans-Golgi compartments. Mol Biol Cell 16: 4024–4033

    PubMed  CAS  Google Scholar 

  • Liu YW, Lee SW, Lee FJ (2006) Arl1p is involved in transport of the GPI-anchored protein Gas1p from the late Golgi to the plasma membrane. J Cell Sci 119: 3845–3855

    PubMed  CAS  Google Scholar 

  • Lock JG, Hammond LA, Houghton F, Gleeson PA, Stow JL (2005) E-cadherin transport from the trans-Golgi network in tubulovesicular carriers is selectively regulated by golgin-97. Traffic 6: 1142–1156

    PubMed  CAS  Google Scholar 

  • Logsdon JJM, Kahn RA (2004) The Arf family tree. In: Kahn RA (ed) Arf family GTPases. Kluwer Academic Publishers, Dordrecht, pp 1–22

    Google Scholar 

  • Lowe SL, Wong SH, Hong W (1996) The mammalian ARF-like protein 1 (Arl1) is associated with the Golgi complex. J Cell Sci 109: 209–220

    PubMed  CAS  Google Scholar 

  • Lu L, Hong W (2003) Interaction of Arl 1-GTP with GRIP domains recruits autoantigens Golgin-97 and Golgin-245/p230 onto the Golgi. Mol Biol Cell 14: 3767–3781

    PubMed  CAS  Google Scholar 

  • Lu L, Horstmann H, Ng C, Hong W (2001) Regulation of Golgi structure and function by ARF-like protein 1 (Arl1). J Cell Sci 114: 4543–4555

    PubMed  CAS  Google Scholar 

  • Lu L, Tai G, Hong W (2004) Autoantigen Golgin-97, an effector of Arl1 GTPase, participates in traffic from the endosome to the trans-Golgi network. Mol Biol Cell 15:4426–4443

    PubMed  CAS  Google Scholar 

  • McElver J, Patton D, Rumbaugh M, Liu C, Yang LJ, Meinke D (2000) The TITAN5 gene of Arabidopsis encodes a protein related to the ADP ribosylation factor family of GTP binding proteins. Plant Cell 12: 1379–1392

    PubMed  CAS  Google Scholar 

  • Misumi Y, Miki K, Takatsuki A, Tamura G, Ikehara Y (1986) Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J Biol Chem 261: 11398–11403

    PubMed  CAS  Google Scholar 

  • Mueller AG, Moser M, Kluge R, Leder S, Blum M, Buttner R, Joost HG, Schurmann A (2002) Embryonic lethality caused by apoptosis during gastrulation in mice lacking the gene of the ADP-ribosylation factor-related protein 1. Mol Cell Biol 22: 1488–1494

    PubMed  CAS  Google Scholar 

  • Munro S (2005) The Arf-like GTPase Arl1 and its role in membrane traffic. Biochem Soc Trans 33: 601–605

    PubMed  CAS  Google Scholar 

  • Nakano A, Muramatsu M (1989) A novel GTP-binding protein, Sar1p, is involved in transport from the endoplasmic reticulum to the Golgi apparatus. J Cell Biol 109: 2677–2691

    PubMed  CAS  Google Scholar 

  • Ohno H, Aguilar RC, Yeh D, Taura D, Saito T, Bonifacino JS (1998) The medium subunits of adaptor complexes recognize distinct but overlapping sets of tyrosine-based sorting signals. J Biol Chem 273: 25915–25921

    PubMed  CAS  Google Scholar 

  • Oka T, Nishikawa S, Nakano A (1991) Reconstitution of GTP-binding Sar1 protein function in ER to Golgi transport. J Cell Biol 114: 671–679

    PubMed  CAS  Google Scholar 

  • Okai T, Araki Y, Tada M, Tateno T, Kontani K, Katada T (2004) Novel small GTPase subfamily capable of associating with tubulin is required for chromosome segregation. J Cell Sci 117: 4705–4715

    PubMed  CAS  Google Scholar 

  • Ooi CE, Dell’Angelica EC, Bonifacino JS (1998) ADP-Ribosylation factor 1 (ARF1) regulates recruitment of the AP-3 adaptor complex to membranes. J Cell Biol 142: 391–402

    PubMed  CAS  Google Scholar 

  • Paleotti O, Macia E, Luton F, Klein S, Partisani M, Chardin P, Kirchhausen T, Franco M (2005) The small G-protein Arf6GTP recruits the AP-2 adaptor complex to membranes. J Biol Chem 280: 21661–21666

    PubMed  CAS  Google Scholar 

  • Panic B, Perisic O, Veprintsev DB, Williams RL, Munro S (2003a) Structural basis for Arl1-dependent targeting of homodimeric GRIP domains to the Golgi apparatus. Mol Cell 12:863–874

    PubMed  CAS  Google Scholar 

  • Panic B, Whyte JR, Munro S (2003b) The ARF-like GTPases Arl1p and Arl3p act in a pathway that interacts with vesicle-tethering factors at the Golgi apparatus. Curr Biol 13:405–410

    PubMed  CAS  Google Scholar 

  • Puertollano R, Aguilar RC, Gorshkova I, Crouch RJ, Bonifacino JS (2001a) Sorting of mannose 6-phosphate receptors mediated by the GGAs. Science 292: 1712–1716

    PubMed  CAS  Google Scholar 

  • Puertollano R, Randazzo PA, Presley JF, Hartnell LM, Bonifacino JS (2001b) The GGAs promote Arf-dependent recruitment of clathrin to the TGN. Cell 105: 93–102

    PubMed  CAS  Google Scholar 

  • Randazzo PA (1997) Functional interaction of ADP-ribosylation factor 1 with phospha-tidylinositol 4,5-bisphosphate. J Biol Chem 272: 7688–7692

    PubMed  CAS  Google Scholar 

  • Randazzo PA, Kahn RA (1994) GTP hydrolysis by ADP-ribosylation factor is dependent on both an ADP-ribosylation factor GTPase-activating protein and acid phospho-lipids [published erratum appears in J Biol Chem 1994 Jun 10; 269(23), 16519]. J Biol Chem 269: 10758–10763

    PubMed  CAS  Google Scholar 

  • Robinson MS, Kreis TE (1992) Recruitment of coat proteins onto Golgi membranes in intact and permeabilized cells: effects of brefeldin A and G protein activators. Cell 69: 129–138

    PubMed  CAS  Google Scholar 

  • Rosenwald AG, Rhodes MA, Van Valkenburgh H, Palanivel V, Chapman G, Boman A, Zhang CJ, Kahn RA (2002) ARL1 and membrane traffic in Saccharomyces cerevisiae. Yeast 19: 1039–1056

    PubMed  CAS  Google Scholar 

  • Sahin A, Lemercier G, Tetaud E, Espiau B, Myler P, Stuart K, Bakalara N, Merlin G (2004) Trypanosomatid flagellum biogenesis: ARL-3A is involved in several species. Exp Parasitol 108: 126–133

    PubMed  CAS  Google Scholar 

  • Salazar G, Craige B, Wainer BH, Guo J, De Camilli P, Faundez V (2005) Phosphatidyli-nositol-4-kinase type II alpha is a component of adaptor protein-3-derived vesicles. Mol Biol Cell 16: 3692–3704

    PubMed  CAS  Google Scholar 

  • Schrick JJ, Vogel P, Abuin A, Hampton B, Rice DS (2006) ADP-ribosylation factor-like 3 is involved in kidney and photoreceptor development. Am J Pathol 168: 1288–1298

    PubMed  CAS  Google Scholar 

  • Schweitzer JK, D’Souza-Schorey C (2005) A requirement for ARF6 during the completion of cytokinesis. Exp Cell Res 311: 74–83

    PubMed  CAS  Google Scholar 

  • Serafini T, Orci L, Amherdt M, Brunner M, Kahn RA, Rothman JE (1991) ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel rolefor a GTP-binding protein. Cell 67: 239–253

    PubMed  CAS  Google Scholar 

  • Setty SR, Shin ME, Yoshino A, Marks MS, Burd CG (2003) Golgi recruitment of GRIP domain proteins by Arf-like GTPase 1 is regulated by Arf-like GTPase 3. Curr Biol 13: 401–404

    PubMed  CAS  Google Scholar 

  • Shin HW, Kobayashi H, Kitamura M, Waguri S, Suganuma T, Uchiyama Y, Nakayama K (2005) Roles of ARFRP1 (ADP-ribosylation factor-related protein 1) in post-Golgi membrane trafficking. J Cell Sci 118: 4039–4048

    PubMed  CAS  Google Scholar 

  • Shrivastava-Ranjan P, Faundez V, Fang G, Rees H, Lah JJ, Levey AI, Kahn RA(2008) Mint3/ X11 gamma is an ADP-ribosylation factor-dependent adaptor that regulates the traffic of the Alzheimer’s precursor protein from the trans-Golgi network. Mol Biol Cell 19: 51–64

    PubMed  CAS  Google Scholar 

  • Stamnes MA, Rothman JE (1993) The binding of AP-1 clathrin adaptor particles to Golgi membranes requires ADP-ribosylation factor, a small GTP-binding protein. Cell 73: 999–1005

    PubMed  CAS  Google Scholar 

  • Stearns T, Willingham MC, Botstein D, Kahn RA (1990) ADP-ribosylation factor is functionally and physically associated with the Golgi complex. Proc Natl Acad Sci USA 87: 1238–1242

    PubMed  CAS  Google Scholar 

  • Takatsu H, Katoh Y, Shiba Y, Nakayama K (2001) Golgi-localizing, gamma-Adaptin ear homology domain, ADP-ribosylation factor-binding (GGA) proteins interact with acidic dileucine sequences within the cytoplasmic domains of sorting receptors through their Vps27p/Hrs/STAM (VHS) domains. J Biol Chem 276: 28541–28545

    PubMed  CAS  Google Scholar 

  • Tamkun JW, Kahn RA, Kissinger M, Brizuela BJ, Rulka C, Scott MP, Kennison JA (1991) The arf like gene encodes an essential GTP-binding protein in Drosophila. Proc Natl Acad Sci USA 88: 3120–3124

    PubMed  CAS  Google Scholar 

  • Terui T, Kahn RA, Randazzo PA (1994) Effects of acid phospholipids on nucleotide exchange properties of ADP-ribosylation factor 1. Evidence for specific interaction with phosphatidylinositol 4,5-bisphosphate. J Biol Chem 269: 28130–28135

    PubMed  CAS  Google Scholar 

  • Traub LM, Ostrom JA, Kornfeld S (1993) Biochemical dissection of AP-1 recruitment onto Golgi membranes. J Cell Biol 123: 561–573

    PubMed  CAS  Google Scholar 

  • Van Valkenburgh H, Shern JF, Sharer JD, Zhu X, Kahn RA (2001) ADP-ribosylation factors (ARFs) and ARF-like 1 (ARL1) have both specific and shared effectors: characterizing ARL1-binding proteins. J Biol Chem 276: 22826–22837

    PubMed  Google Scholar 

  • Vieira OV, Verkade P, Manninen A, Simons K (2005) FAPP2 is involved in the transport of apical cargo in polarized MDCK cells. J Cell Biol 170: 521–526

    PubMed  CAS  Google Scholar 

  • Volpicelli-Daley LA, Li Y, Zhang CJ, Kahn RA (2005) Isoform-selective effects of the depletion of ADP-ribosylation factors 1-5 on membrane traffic. Mol Biol Cell 16: 4495–4508

    PubMed  CAS  Google Scholar 

  • West MA, Bright NA, Robinson MS (1997) The role of ADP-ribosylation factor and phospholipase D in adaptor recruitment. J Cell Biol 138: 1239–1254

    PubMed  CAS  Google Scholar 

  • Wu M, Lu L, Hong W, Song H (2004) Structural basis for recruitment of GRIP domain golgin-245 by small GTPase Arl1. Nat Struct Mol Biol 11: 86–94

    PubMed  CAS  Google Scholar 

  • Zahn C, Hommel A, Lu L, Hong W, Walther DJ, Florian S, Joost HG, Schurmann A (2006) Knockout of Arfrp1 leads to disruption of ARF-like 1 (ARL1) targeting to the trans-Golgi in mouse embryos and HeLa cells. Mol Membr Biol 23: 475–485

    PubMed  CAS  Google Scholar 

  • Zheng Y, Glaven JA, Wu WJ, Cerione RA (1996) Phosphatidylinositol 4,5-bisphosphate provides an alternative to guanine nucleotide exchange factors by stimulating the dissociation of GDP from Cdc42Hs. J Biol Chem 271: 23815–23819

    PubMed  CAS  Google Scholar 

  • Zhou C, Cunningham L, Marcus AI, Li Y, Kahn RA (2006) Arl2 and Arl3 regulate different microtubule-dependent processes. Mol Biol Cell 17: 2476–2487

    PubMed  CAS  Google Scholar 

  • Zhu X, Boman AL, Kuai J, Cieplak W, Kahn RA (2000) Effectors increase the affinity of ADP-ribosylation factor for GTP to increase binding. J Biol Chem 275: 13465–13475

    PubMed  CAS  Google Scholar 

  • Zhu Y, Doray B, Poussu A, Lehto VP, Kornfeld S (2001) Binding of GGA2 to the lysosomal enzyme sorting motif of the mannose 6-phosphate receptor. Science 292: 1716–1718

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this chapter

Cite this chapter

Kahn, R.A. (2008). Arfs and Arls: models for Arf family members in membrane traffic at the Golgi. In: Mironov, A.A., Pavelka, M. (eds) The Golgi Apparatus. Springer, Vienna. https://doi.org/10.1007/978-3-211-76310-0_8

Download citation

Publish with us

Policies and ethics