Skip to main content

The Golgi ribbon and the function of the Golgins

  • Chapter
The Golgi Apparatus

Abstract

The Golgi apparatus (GA) is present in different organisms in very different forms. When visualized by immunof luorescence in most mammalian cells, the Golgi ribbon appears as a lacy structure that occupies a volume of 5–7µm in length, 1–2µm in width, and 3–5µm in depth (Storrie and Kreis 1996), and that surrounds the centrosome (or microtubule-organizing centre; MTOC) (see Chapter 2.14). The positions of the MTOC and the GA depend on cell polarity. In many polarized epithelial cells, the centrosome is positioned near the apical portion of the cell surface (Ojakian et al. 1997), where the GA also resides. From dozens to hundreds of Golgi stacks that act as a single organelle are linked together to form an interconnected, ribbon-like structure in the perinuclear area (Hidalgo Carcedo et al. 2004; Polishchuk and Mironov 2004; Mogelsvang et al. 2004). Completely isolated stacks are rare (Cole et al. 1996a, b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrami L, Fivaz M, Kobayashi T, Kinoshita T, Parton RG, Van der Goot FG (2001) Crosstalk between caveolae and glycosylphosphatidylinositol-rich domains. J Biol Chem 276:30729–30736

    Article  PubMed  CAS  Google Scholar 

  2. Allan BB, Moyer BD, Balch WE (2000) Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Science 289: 444–448

    Article  PubMed  CAS  Google Scholar 

  3. Barr FA, Nakamura N, Warren G (1998) Mapping the interaction between GRASP65 and GM130, components of a protein complex involved in the stacking of Golgi cisternae. EMBO J 17: 3258–3268

    Article  PubMed  CAS  Google Scholar 

  4. Barr FA (1999) A novel Rab6-interacting domain defines a family of Golgi-targeted coiled-coil proteins. Curr Biol 9: 381–384

    Article  PubMed  CAS  Google Scholar 

  5. Barr FA, Short B (2003) Golgins in the structure and dynamics of the Golgi apparatus. Curr Opin Cell Biol 15: 405–413

    Article  PubMed  CAS  Google Scholar 

  6. Brown WJ, Chambers K, Doody A (2003) Phospholipase A2 (PLA2) enzymes in membrane trafficking: mediators of membrane shape and function. Traffic 4: 214–221

    Article  PubMed  CAS  Google Scholar 

  7. Burkhardt JK, Echeverri CJ, Nilsson T, Vallee RB (1997) Over expression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J Cell Biol 139: 469–484

    Article  PubMed  CAS  Google Scholar 

  8. Burkhard P, Stetefeld J, Strelkov SV (2001) Coiled coils: a highly versatile protein folding motif. Trends Cell Biol 11: 82–88

    Article  PubMed  CAS  Google Scholar 

  9. Chan EKL, Fritzler MJ (1998) Golgins: coiled-coil proteins associated with the Golgi complex, Electron. J Biotechnol 1: 1–10

    Google Scholar 

  10. Colanzi A, Deerinck TJ, Ellisman MH, Malhotra V (2000) A specific activation of mitogen-activated protein kinase kinase 1 (MEK1) is required for Golgi fragmentation during mitosis. J Cell Biol 149: 331–339

    Article  PubMed  CAS  Google Scholar 

  11. Colanzi A, Suetterlin C, Malhotra V (2003) Cell-cycle-specific Golgi fragmentation: how and why? Curr Opin Cell Biol 15: 462–467

    Article  PubMed  CAS  Google Scholar 

  12. Cole NB, Smith CL, Sciaky N, Terasaki M, Edidin M, Lippincott-Schwartz J (1996a) Diffusional mobility of Golgi proteins in membranes of living cells. Science 273: 797–801

    Article  PubMed  CAS  Google Scholar 

  13. Cole NB, Sciaky N, Marotta A, Song J, Lippincott-Schwartz J (1996b) Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol Biol Cell 7: 631–650

    PubMed  CAS  Google Scholar 

  14. Corthesy-Theulaz I, Pauloin A, Pfeffer SR (1992) Cytoplasmic dynein participates in the centrosomal localization of the Golgi complex. J Cell Biol 118: 1333–1345

    Article  PubMed  CAS  Google Scholar 

  15. Diao A, Rahmann D, Pappin DJ, Lucocq J, Lowe M (2003) The coiled-coil membrane protein Golgin-84 is a novel Rab effector required for Golgi ribbon formation, J Cell Biol 160: 201–212

    Article  PubMed  CAS  Google Scholar 

  16. Diaz Anel AM, Malhotra V (2005) PKCeta is required for beta1gamma2/beta3gamma2-and PKD-mediated transport to the cell surface and the organization of the Golgi apparatus. J Cell Biol 169: 83–91

    Article  PubMed  CAS  Google Scholar 

  17. Dirac-Svejstrup AB, Shorter J, Waters MG, Warren G (2000) Phosphorylation of the vesicle-tethering protein p115 by a casein kinase II-like enzyme is required for Golgi reassembly from isolated mitotic fragments. J Cell Biol 150: 475–488

    Article  PubMed  CAS  Google Scholar 

  18. Eystathioy T, Jakymiw A, Fujita DJ, Fritzler MJ, Chan EK(2000) Human autoantibodies to a novel Golgi protein Golgin-67, high similarity with golgin-95/GM130autoantigen. J Autoimmun 14: 179–187

    Article  PubMed  CAS  Google Scholar 

  19. Feinstein TN, Linstedt AD (2008) GRASP55 regulates Golgi ribbon formation. Mol Biol Cell Published April 23

    Google Scholar 

  20. Feldman DA, Weinhold PA (1998) Cytidylyltransferase-binding protein is identical to transcytosis-associated protein (TAP/p115) and enhances the lipid activation of cytidylyltransferase. J Biol Chem 273: 102–109

    Article  PubMed  CAS  Google Scholar 

  21. Franke WW, Kartenbeck J (1976) Some principles of membrane differentiation. In: Mueller-Berat N (ed) Progress in differentiation research. Elsevier-North Holland Publishing Co., Amsterdam, pp 213–243

    Google Scholar 

  22. Fridmann-Sirkis Y, Siniossoglou S, Pelham HR (2004) TMF is a golgin that binds Rab6 and influences Golgi morphology. BMC Cell Biol 5: 18

    Article  PubMed  Google Scholar 

  23. Fritzler MJ, Hamel JC, Ochs RL, Chan EK (1993) Molecular characterization of two human autoantigens: unique cDNAs encoding 95-and160-kD proteins of a putative family in the Golgi complex. J Exp Med 178: 49–62

    Article  PubMed  CAS  Google Scholar 

  24. Fritzler MJ, Lung CC, Hamel JC, Griffith KJ, Chan EK (1995) Molecular characterization of Golgin-245, a novel Golgi complex protein containing a granin signature. J Biol Chem 270: 31262–31268

    Article  PubMed  CAS  Google Scholar 

  25. Gillingham AK, Pfeifer AC, Munro S (2002) CASP, the alternatively spliced product of the gene encoding the CCAAT-displacement protein transcription factor, is a Golgi membrane protein related to giantin. Mol Biol Cell 13: 3761–3774

    Article  PubMed  CAS  Google Scholar 

  26. Gillingham AK, Munro S (2003) Long coiled-coil proteinsand membrane traffic. Biochim BiophysActa 1641:71–85

    CAS  Google Scholar 

  27. Griffith KJ, Chan EK, Lung CC, Hamel JC, Guo X, Miyachi K, Fritzler MJ (1997) Molecular cloning of a novel 97-kDa Golgi complex autoantigen associated with Sjogren’s syndrome. Arthritis Rheum 40: 1693–1702

    Article  PubMed  CAS  Google Scholar 

  28. Harada A, Takei Y, Kanai Y, Tanaka Y, Nonaka S, Hirokawa N (1998) Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein. J Cell Biol 141: 51–59

    Article  PubMed  CAS  Google Scholar 

  29. Hidalgo Carcedo C, Bonazzi M, Spano S, Turacchio G, Colanzi A, Luini A, Corda D (2004) Mitotic Golgi partitioning is driven by the membrane-fissioning protein CtBP3/ BARS. Science 305: 93–96

    Article  PubMed  CAS  Google Scholar 

  30. Ho WC, Allan VJ, VanMeer G, Berger EG, Kreis TE (1989) Reclustering of scattered Golgi elements occurs along microtubules. Eur J Cell Biol 48: 250–263

    PubMed  CAS  Google Scholar 

  31. Holleran EA, Ligon LA, Tokito M, Stankewich MC, Morrow JS, Holzbaur ELF (2001) Beta III spectrin binds to the Arp1 subunitof dynactin. J Biol Chem 276: 36598–36605

    Article  PubMed  CAS  Google Scholar 

  32. Horton AC, Racz B, Monson EE, Lin AL, Weinberg RJ, Ehlers MD (2005) Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48: 757–771

    Article  PubMed  CAS  Google Scholar 

  33. Inoue T (1992) Complementary scanning electron microscopy: technical notes and applications. Arch Histol Cytol 55(Suppl): 45–51

    Article  PubMed  Google Scholar 

  34. Kjer-Nielsen L, Teasdale RD, Van Vliet C, Gleeson PA (1999) A novel Golgi-localisation domain shared by a class of coiled-coil peripheral membrane proteins. Curr Biol 9: 385–388

    Article  PubMed  CAS  Google Scholar 

  35. Kondylis V, Rabouille C (2003) A novel role for dp1 15 in the organization of tER sites in Drosophila. J Cell Biol 162: 185–198

    Article  PubMed  CAS  Google Scholar 

  36. Kondylis V, Spoorendonk KM, Rabouille C (2005) dGRASP localization and function in the early exocytic pathway in Drosophila S2 cells. Mol Biol Cell 16: 4061–4072

    Article  PubMed  CAS  Google Scholar 

  37. Kumar S, Lee IH, Plamann M (2004) Cytoplasmic dynein ATPase activity is regulated by dynactin-dependent phosphorylation. J Biol Chem 275: 31798–31804

    Google Scholar 

  38. Kweon HS, Beznoussenko GV, Micaroni M, Polishchuk RS, Trucco A, Martella O, Di Giandomenico D, Marra P, Fusella A, Di Pentima A, Berger EG, Geerts WJ, Koster AJ, Burger KN, Luini A, Mironov AA (2004) Golgi enzymes are enriched in perforated zones of Golgi cisternae but are depleted in COPI vesicles. Mol Biol Cell 15: 4710–4724

    Article  PubMed  CAS  Google Scholar 

  39. Lesa GM, Seemann J, Shorter J, Vandekerckhove J, Warren G (2000) The amino-terminal domain of the Golgi protein giantin interacts directly with the vesicle-tethering p115. J Biol Chem 275: 2831–2836

    Article  PubMed  CAS  Google Scholar 

  40. L, Tai G, Hong W (2004) Autoantigen golgin-97, an effector of Arl1 GTPase, participates in traffic from the endosome to the TGN. Mol Biol Cell 15: 4426–4443

    Article  Google Scholar 

  41. Luke MR, Kjer-Nielsen L, Brown DL, Stow JL, Gleeson PA (2003) GRIP domain-mediated targeting of two new coiled-coil proteins, GCC88 and GCC185, to subcompartments of the trans-Golgi network. J Biol Chem 278: 4216–4226

    Article  PubMed  CAS  Google Scholar 

  42. Malsam J, Satoh A, Pelletier L, Warren G (2005) Golgin tethers define subpopulations of COPI vesicles. Science 307: 1095–1098

    Article  PubMed  CAS  Google Scholar 

  43. Marra P, Maffucci T, Daniele T, Tullio GD, Ikehara Y, Chan EK, Luini A, Beznoussenko G, Mironov A, De Matteis MA (2001) The GM130 and GRASP65 Golgi proteins cycle through and define a subdomain of the intermediate compartment. Nat Cell Biol 3: 1101–1013

    Article  PubMed  CAS  Google Scholar 

  44. Marra P, Salvatore L, Mironov A Jr, Di Campli A, Di Tullio G, Trucco A, Beznoussenko G, Mironov A, De Matteis MA (2007) The biogenesis of the Golgi ribbon: the roles of membrane input from the ER and of GM130. Mol Biol Cell 18: 1595–1608

    Article  PubMed  CAS  Google Scholar 

  45. Matanis T, Akhmanova A, Wulf P, Del Nery E, Weide T, Stepanova T, Galjart N, Grosveld F, Goud B, De Zeeuw CI, Barnekow A, Hoogenraad CC (2002) Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein dynactin motor complex. Nat Cell Biol 4: 986–992

    Article  PubMed  CAS  Google Scholar 

  46. Minin AA (1997) Dispersal of Golgi apparatus in nocodazole-treated fibroblasts is a kinesin-driven process. J Cell Sci 110: 2495–2505

    PubMed  CAS  Google Scholar 

  47. Mironov AA, Mironov AA Jr, Beznoussenko GV, Trucco A, Lupetti P, Smith JD, Geerts WJ, Koster AJ, Burger KN, Martone ME, Deerinck TJ, Ellisman MH, Luini A (2003) ER-to-Golgi carriers arise through direct en-bloc protrusion and multistage maturation of specialized ER exit domains. Dev Cell 5: 583–594

    Article  PubMed  CAS  Google Scholar 

  48. Mogelsvang S, Marsh BJ, Ladinsky MS, Howell KE (2004) Predicting function from structure: 3D structure studies of the mammalian Golgi complex. Traffic 5:338–345

    Article  PubMed  CAS  Google Scholar 

  49. Moyer BD, Allan BB, Balch WE (2001) Rab1 interaction with a GM130 effector complex regulates COPII vesicle cis-Golgi tethering. Traffic 2: 268–276

    Article  PubMed  CAS  Google Scholar 

  50. Nakamura N, Rabouille C, Watson R, Nilsson T, Hui N, Slusarewicz P, Kreis TE, Warren G (1995) Characterization of acis-Golgimatrixprotein,GM130.J Cell Biol 131:1715–1726

    Article  PubMed  CAS  Google Scholar 

  51. Ojakian GK, Nelson WJ, Beck KA (1997) Mechanisms for de novo biogenesis of an apical membrane compartment in groups of simple epithelial cells surrounded by extracellular matrix. J Cell Sci 110: 2781–2794

    PubMed  CAS  Google Scholar 

  52. Opat AS, Van Vliet C, Gleeson PA (2001) Trafficking and localisation of resident Golgi glycosylation enzymes. Biochimie 83: 763–773

    Article  PubMed  CAS  Google Scholar 

  53. Papoulas O, Hays TS, Sisson JC (2005) The golgin Lava lamp mediates dynein-based Golgi movements during Drosophila cellularization. Nat Cell Biol 7: 612–618

    Article  PubMed  CAS  Google Scholar 

  54. Pecot MY, Malhotra V (2006) The Golgi apparatus maintains its organization independent of the endoplasmic reticulum. Mol Biol Cell 17: 5372–5380

    Article  PubMed  CAS  Google Scholar 

  55. Perez F, Pernet-Gallay K, Nizak C, Goodson HV, Kreis TE, Goud B (2002) CLIPR-59, a new trans-Golgi/TGN cytoplasmic linker protein belonging to the CLIP-170 family. J Cell Biol 156:631–642

    Article  PubMed  CAS  Google Scholar 

  56. Polishchuk RS, Polishchuk EV, Mironov AA (1999) Stack coalescence in MT-deprived cells with fragmented Golgi. Eur J Cell Biol 78: 170–185

    PubMed  CAS  Google Scholar 

  57. Polishchuk RS, Mironov AA (2004) Structural aspects of Golgi function. Cell Mol Life Sci 61:146–158

    Article  PubMed  CAS  Google Scholar 

  58. Pullikuth AK, Weidman PJ (2002) In-vitro transport on cis and trans sides of the Golgi involves two distinct types of coatomer and ADP-ribosylation factor-independent transport intermediates. J Biol Chem 277: 50355–50364

    Article  PubMed  CAS  Google Scholar 

  59. Puthenveedu MA, Bachert C, Puri S, Lanni F, Linstedt AD (2006) GM130 and GRASP65-dependent lateral cisternal fusion allows uniform Golgi-enzyme distribution. Nat Cell Biol 8: 238–248

    Article  PubMed  CAS  Google Scholar 

  60. Rabouille C, Levine TP, Peters J-M, Warren G (1995) An NSF-like ATPase, p97, and NSF mediate costernal regrowth from mitotic Golgi fragments. Cell 82: 905–914

    Article  PubMed  CAS  Google Scholar 

  61. Rambourg A, Clermont Y, Chretien M, Olivier L (1993) Modulation of the Golgi apparatus in stimulated and non-stimulated prolactin cells of female rats. Anat Rec 235: 353–362

    Article  PubMed  CAS  Google Scholar 

  62. Renna L, Hanton SL, Stefano G, Bortolotti L, Misra V, Brandizzi F (2005) Identification and characterization of AtCASP, a plant transmembrane Golgi matrix protein. Plant Mol Biol 58: 109–122

    Article  PubMed  CAS  Google Scholar 

  63. Rios RM, Tassin AM, Celati C, Antony C, Boissier MC, Homberg JC, Bornens M (1994) A peripheral protein associated with the cis-Golgi network redistributes in the intermediate compartment upon brefeldin A treatment. J Cell Biol 125: 997–1013

    Article  PubMed  CAS  Google Scholar 

  64. Rios RM, Sanchis A, Tassin AM, Fedriani C, Bornens M (2004) GMAP-210 recruitsgamma-tubulin complexes to cis-Golgi membranes and is required for Golgi ribbon formation. Cell 118:323–335

    Article  PubMed  CAS  Google Scholar 

  65. Roghi C, Allan VJ (1999) Dynam ic association of cytoplasm ic dynein heavy chain 1 a with the Golgi apparatus and intermediate compartment. J Cell Sci 112: 4673–4685

    PubMed  CAS  Google Scholar 

  66. Rojo M, Emery G, Marjomaki V, McDowall AW, Parton RG, Gruenberg J (2000) The transmembrane protein p23 contributes to the organization of the Golgi apparatus. J Cell Sci 113: 1043–1057

    PubMed  CAS  Google Scholar 

  67. Schroer TA (2004) Dynactin. Annu Rev Cell Dev Biol 20: 759–779

    Article  PubMed  CAS  Google Scholar 

  68. Seaman MN (2004) Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J Cell Biol 165: 111–122

    Article  PubMed  CAS  Google Scholar 

  69. Seelig HP, Schranz P, Schroter H, Wiemann C, Griffiths G, Renz M (1994) Molecular genetic analyses of a 376-kilodalton Golgi complex membrane protein (giantin). Mol Cell Biol 14: 2564–2576

    PubMed  CAS  Google Scholar 

  70. Seemann J, Jokitalo EJ, Pypaert M, Warren G (2000a) Matrix proteins can generate the higher order architecture of the Golgi apparatus. Nature 407: 1022–1026

    Article  PubMed  CAS  Google Scholar 

  71. Seemann J, Jokitalo EJ, Warren G (2000b) The role of the tethering proteins p115 and GM130 in transport through the Golgi apparatus in vivo. Mol Biol Cell 11: 635–645

    PubMed  CAS  Google Scholar 

  72. Shestakova A, Zolov S, Lupashin V (2006) COG complex-mediated recycling of Golgi glycosyltransferases is essential for normal protein glycosylation. Traffic 7:191–204

    Article  PubMed  CAS  Google Scholar 

  73. Short B, Preisinger C, Schaletzky J, Kopajtich R, Barr FA (2002) The Rab6 GTPase regulates recruitment of the dynactin complex to Golgi membranes. Curr Biol 12:1792–1795

    Article  PubMed  CAS  Google Scholar 

  74. Short B, Haas A, Barr FA (2005) Golgins and GTPases, giving identity and structure to the Golgi apparatus. Biochim Biophys Acta 1744: 383–395

    Article  PubMed  CAS  Google Scholar 

  75. Shorter J, Watson R, Giannakou M-E, Clarke M, Warren G, Barr FA (1999) GRASP55, a second mammalian GRASP protein involved in the stacking of Golgi cisternae in a cell-free system. EMBO J 18: 4949–4960

    Article  PubMed  CAS  Google Scholar 

  76. Shorter J, Warren G (1999) A role for the vesicle tethering protein, p115, in the post-mitotic stacking of reassembling Golgi cisternae in a cell-free system. J Cell Biol 146: 57–70

    PubMed  CAS  Google Scholar 

  77. Shorter J, Beard MB, Seemann J, Dirac-Svejstrup AB, Warren G (2002) Sequential tethering of golgins and catalysis of SNAREpin assembly by the vesicle-tethering protein p115. J Cell Biol 157:45–62

    Article  PubMed  CAS  Google Scholar 

  78. Siniossoglou S, Peak-Chew SY, Pelham HR (2000) Ric1p and Rgp1pform a complex that catalyses nucleotide exchange on Ypt6p. EMBO J 19: 4885–4894

    Article  PubMed  CAS  Google Scholar 

  79. Sohda M, Misumi Y, Yoshimura S, Nakamura N, Fusano T, Ogata S, Sakisaka S, Ikehara Y (2007) The interaction of two tethering factors, p115 and COG complex, is required for Golgi integrity. Traffic 8: 270–284

    Article  PubMed  CAS  Google Scholar 

  80. Sonnichsen B, Lowe M, Levine T, Jamsa E, Dirac-Svejstrup AB, Warren G (1998) A role for giantin in docking COPI vesicles to Golgi membranes. J Cell Biol 140: 1013–1021

    Article  PubMed  CAS  Google Scholar 

  81. Storrie B, Kreis TE (1996) Probing the mobility of membrane proteins inside the cell. Trends Cell Biol 6: 321–324

    Article  PubMed  CAS  Google Scholar 

  82. Storrie B, White J, Rottger S, Stelzer EH, Suganuma T, Nilsson T (1998) Recycling of Golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced Golgi scattering. J Cell Biol 143:1505–1521

    Article  PubMed  CAS  Google Scholar 

  83. Sun Y, Shestakova A, Hunt L, Sehgal S, Lupashin V, Storrie B (2007) Rab6 regulates both ZW10/RINT-1 and conserved oligomeric Golgi complex-dependent Golgi trafficking and homeostasis. Mol Biol Cell 18: 4129–4142

    Article  PubMed  CAS  Google Scholar 

  84. Sutterlin C, Polishchuk R, Pecot M, Malhotra V (2005) The Golgi-associated protein GRASP65 regulates spindle dynamics and is essential for cell division. Mol Biol Cell 16:3211–3222

    Article  PubMed  CAS  Google Scholar 

  85. Thyberg J, Moskalewski S (1999) Role of microtubules in the organization of the Golgi complex. Exp Cell Res 246: 263–279

    Article  PubMed  CAS  Google Scholar 

  86. Trucco A, Polishchuk RS, Martella O, Di Pentima A, Fusella A, Di Giandomenico D, San Pietro E, Beznoussenko GV, Polishchuk EV, Baldassarre M, Buccione R, Geerts WJ, Koster AJ, Burger KN, Mironov AA, Luini A (2004) Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat Cell Biol 6: 1071–1081

    Article  PubMed  CAS  Google Scholar 

  87. Tsukada M, Will E, Gallwitz D (1999) Structural and functional analysis of a novel coiled-coil protein involved in Ypt6 GTPase-regulated protein transport in yeast. Mol Biol Cell 10:63–75

    PubMed  CAS  Google Scholar 

  88. Valderrama F, Babia T, Ayala I, Kok JW, Renau-Piqueras J, Egea G (1998) Actin micro-filaments are essential for the cytological positioning and morphology of the Golgi complex. Eur J Cell Biol 76: 9–17

    PubMed  CAS  Google Scholar 

  89. Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112: 467–480

    Article  PubMed  CAS  Google Scholar 

  90. Vallee RB, Williams JC, Varma D, Barnhart LE (2004) Dynein: an ancient motor protein involved in multiple modes of transport. J Neurobiol 58: 189–200

    Article  PubMed  CAS  Google Scholar 

  91. Varki A (1998) Factors controlling the glycosylation potential of the Golgi apparatus. Trends Cell Biol 8: 34–40

    Article  PubMed  CAS  Google Scholar 

  92. Vaughan PS, Miura P, Henderson M, Byrne B, Vaughan KT (2002) A role for regulated binding of p150Glued to microtubule plus ends in organelle transport. J Cell Biol 158:305–319

    Article  PubMed  CAS  Google Scholar 

  93. Ward TH, Brandizzi F (2004) Dynamics of proteins in Golgi membranes: comparisons between mammalian and plant cells highlighted by photobleaching techniques. Cell Mol Life Sci 61: 172–185

    Article  PubMed  CAS  Google Scholar 

  94. Wehland J, Henkart M, Klausner R, Sandoval IV (1983) Role of microtubules in the distribution of the Golgi apparatus: effect of taxol and microinjected anti-alpha-tubulin antibodies. Proc Natl Acad Sci USA 80: 4286–4290

    Article  PubMed  CAS  Google Scholar 

  95. Weigert R, Silletta MG, Spanò S, Turacchio G, Cericola C, Colanzi A, Mancini R, Polishchuk EV, Salmona M, Facchiano F, Burger KNJ, Mironov A, Luini A, Corda D(1999) CtBP/ BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature 402: 429–433

    Article  PubMed  CAS  Google Scholar 

  96. Whyte JR, Munro S (2002) Vesicle tethering complexes in membrane traffic. J Cell Sci 115:2627–2637

    PubMed  CAS  Google Scholar 

  97. Xu Y, Takeda S, Nakata T, Noda Y, Tanaka Y, Hirokawa N (2002) Role of KIFC3 motor protein in Golgi positioning and integration. J Cell Biol 158: 293–303

    Article  PubMed  CAS  Google Scholar 

  98. Xu Y, Martin S, James DE, Hong W (2002) GS15 forms a SNARE complex with syntaxin 5, GS28, and Ykt6 and is implicated in traffic in the early cisternae of the Golgi apparatus. Mol Biol Cell 13: 3493–3507

    Article  PubMed  CAS  Google Scholar 

  99. Xueyi Li, Kaloyanova D, Van Eijk M, Eerland R, Van der Goot G, Oorschot V, Klumperman J, Lottspeich F, Starkuviene V, Wieland FT, Helms JB (2007) Involvement of a Golgi-resident GPI-anchored protein in maintenance of the Golgi structure. Mol Biol Cell 18:1261–1271

    Article  CAS  Google Scholar 

  100. Yang JS, Lee SY, Spanò S, Gad H, Zhang L, Nie Z, Bonazzi M, Corda D, Luini A, Hsu VW (2005) A role for BARS at the fission step of COPI vesicle formation from Golgi membrane. EMBO J 24: 4133–4143

    Article  PubMed  CAS  Google Scholar 

  101. Yang JS, Zhang L, Lee SY, Gad H, Luini A, Hsu VW (2006) Key components of the fission machinery are interchangeable. Nat Cell Biol 8: 1376–1382

    Article  PubMed  CAS  Google Scholar 

  102. Yoshino A, Setty SR, Poynton C, Whiteman EL, Saint-Pol A, Burd CG, Johannes L, Holzbaur EL, Koval M, McCaffery JM, Marks MS (2005) Golgin-1 (p230, golgin-245) modulates Shiga-toxin transport to the Golgi and Golgi motility towards the microtubule-organizing centre. J Cell Sci 118: 2279–2293

    Article  PubMed  CAS  Google Scholar 

  103. Young WW Jr (2004) Organization of Golgi glycosyltransferases in membranes: complexity via complexes. J Membrane Biol 198: 1–13

    Article  CAS  Google Scholar 

  104. Zhang T, Hong W (2001) Ykt6 forms a SNARE complex with syntaxin 5, GS28, and Bet1 and participates in a late stage in endoplasmic reticulum-Golgi transport. J Biol Chem 276: 27480–27487

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this chapter

Cite this chapter

De Matteis, M.A., Mironov, A.A., Beznoussenko, G.V. (2008). The Golgi ribbon and the function of the Golgins. In: Mironov, A.A., Pavelka, M. (eds) The Golgi Apparatus. Springer, Vienna. https://doi.org/10.1007/978-3-211-76310-0_15

Download citation

Publish with us

Policies and ethics