Skip to main content

Golgi glycosylation enzymes

  • Chapter
Book cover The Golgi Apparatus

Abstract

From time to time the question is posed by colleagues and research pupils about an object blackened by the classical Golgi techniques [black reaction or reazione nera developed by C. Golgi to identify the Golgi Apparatus], “Is this a Golgi body?” I suggest the proper answer would be: “I do not think that your question has a meaning. It is framed in terms of an improbable hypothesis” (Baker 1953). This telling citation coincides with the end of the long-lasting Golgi controversy about its mere existence; it was finally resolved by the clear definition of the GA1 as an ultrastructural entity (Dalton and Felix 1954). In fact, at these times the believers already recognized that the GA is likely to contain mono- and polysaccharides by virtue of specific histochemical staining (discussed by Bensley (1951)). The breakthrough to recognize the GA as the main cellular site of glycosylation can be traced back to the metabolic incorporation of glucose into cellularcomponents shown by autoradiography to occur in the GA (Neutra and Leblond 1966). The procedure applied by these authors was inspired by Palade’s pioneering work on the secretory pathway (Caro and Palade 1964). The next milestone in associating glycosylation mechanisms with the GA was the advent of fractionation techniques combined with identification of subcellular fractions by marker enzymes such as galactosyltransferase [EC 2.4.1.22]. In the late 1960s a number of groups introduced a corresponding enzyme to identify Golgi fractions which were morphologically assigned to the GA (for review see (1981)). The circle was then closed by the first immunocytochemical staining of the GA using antibodies to this enzyme (Berger et al. 1981), as shown in Fig. 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeijon C, Mandon EC, Hirschberg CB (1997) Transporters of nucleotide sugars, nucle-otide sulfate and ATP in the Golgi apparatus. Trends Biochem Sci 22: 203–207

    Google Scholar 

  • Akama TO, Nakagawa H, Wong NK, Sutton-Smith M, Dell A, Morris HR, Nakayama J, Nishimura S, Pai A, Moremen KW, Marth JD, Fukuda MN (2006) Essential and mutually compensatory roles of alpha-mannosidase II and alpha-mannosi-dase IIx in N-glycan processing in vivo in mice. Proc Natl Acad Sci USA 103: 8983–8988

    Google Scholar 

  • Akama TO, Nishida K, Nakayama J, Watanabe H, Ozaki K, Nakamura T, Dota A, Kawasaki S, Inoue Y, Maeda N, Yamamoto S, Fujiwara T, Thonar EJMA, Shimomura Y, Kinoshita S, Tanigami A, Fukuda MN (2000) Macularcorneal dystrophy type I and type II are caused by distinct mutations in a new sulphotransferase gene. Nature Genetics 26: 237–241

    Google Scholar 

  • Amado M, Almeida R, Schwientek T, Clausen H (1999) Identification and characterization of large galactosyltransferase gene families: galactosyltransferases for all functions. Biochim Biophys Acta 1473: 35–53

    Google Scholar 

  • Amado M, Bennett EP, Carneiro F, Clausen H (2000) Characterization of the histo-blood group O(2) gene and its protein product. Vox Sang 79: 219–226

    Google Scholar 

  • Angata K, Fukuda M (2003) Polysialyltransferases: major players in polysialic acid synthesis on the neural cell adhesion molecule. Biochimie 85: 195–206

    Google Scholar 

  • Aoki D, Lee N, Yamaguchi N, Dubois C, Fukuda MN (1992) Golgi retention of a trans-Golgi membrane protein, galactosyltransferase, requires cysteine and histidine residues within the membrane-anchoring domain. Proc Natl Acad Sci USA 89: 4319–4323

    Google Scholar 

  • Asano M, Furukawa K, Kido M, Matsumoto S, Umesaki Y, Kochibe N, Iwakura Y (1997) Growth retardation and early death of beta-1,4-galactosyltransferase knockout mice with augmented proliferation and abnormal differentiation of epithelial cel ls. EMBOJ 16: 1850–1857

    Google Scholar 

  • Au CE, Bell AW, Gilchrist A, Hiding J, Nilsson T, Bergeron JJ (2007) Organellar proteomics to create the cell map. Curr Opin Cell Biol 19: 376–385

    Google Scholar 

  • Babad H, Hassid WZ (1966) Soluble uridine diphosphate D-galactose: D-glucose beta-4-D-galactosyltransferase from bovine milk. J Biol Chem 241: 2672–2678

    Google Scholar 

  • Baker JR (1953) The expressions “Golgi Apparatus”, “Golgi body” and “Golgi substance”. Nature 172:617–618

    Google Scholar 

  • Bao M, Elmendorf BJ, Booth JL, Drake RR, Canfield WM (1996) Bovine UDP-N-acet-ylglucosamine: lysosomal-enzyme N-acetylglucosamine-1-phosphotransferase. II. Enzymatic characterization and identification of the catalytic subunit. J Biol Chem 271:31446–31451

    Google Scholar 

  • BarrattJ, Smith AC, Feehally J (2007) The pathogenic role of IgA1 O-l inked glycosylation in the pathogenesis of IgA nephropathy. Nephrology (Carlton) 12: 275–284

    Google Scholar 

  • Bensley RR (1951) Facts versus artefacts in cytology: the Golgi apparatus. Exp Cell Res 2: 1–9

    Google Scholar 

  • Berger EG (1999) Tn-syndrome. Biochim Biophys Acta 1455: 255–268

    Google Scholar 

  • Berger EG (2002) Ectopic localizations of Golgi glycosyltransferases. Glycobiology 12: 29R–36R

    Google Scholar 

  • Berger EG, Mandel T, Schilt U (1981) Immunohistochemical localization of galactosyltransferase in human fibroblasts and HeLa cells. J Histochem Cytochem 29: 364–370

    Google Scholar 

  • Berger EG, Rohrer J (2003) Galactosyltransferase—still up and running. Biochimie 85: 261–274

    Google Scholar 

  • Berger EG, Roth J (1997) The Golgi Apparatus. Birkhauser, Basel

    Google Scholar 

  • Beyer TA, Sadler JE, Rearick JI, Paulson JC, Hill RL (1981) Glycosyltransferases and their use in assessing oligosaccharide structure and structure-function relationships. Adv Enzymol Relat Areas Mol Biol 52: 23–175

    Google Scholar 

  • Bonfanti L (2006) PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog Neurobiol 80: 129–164

    Google Scholar 

  • Borsig L (2004) Selectins facilitate carcinoma metastasis and heparin can prevent them. News Physiol Sci 19: 16–21

    Google Scholar 

  • Borsig L, Imbach T, Hochli M, Berger EG (1999) Alpha1,3Fucosyltransferase VI is expressed in HepG2 cells and codistributed with beta1,4galactosyltransferase I in the Golgi apparatus and monensin-induced swollen vesicles. Glycobiology 9: 1273–1280

    Google Scholar 

  • Breton C, Snajdrova L, Jeanneau C, Koca J, Imberty A (2006) Structures and mechanisms of glycosyltransferases. Glycobiology 16: 29R–37R

    Google Scholar 

  • Bretz R, Bretz H, Palade GE (1980) Distribution of terminal glycosyltransferases in hepatic Golgi fractions. J Cell Biol 84: 87–101

    Google Scholar 

  • Brockhausen I (1995) Biosynthesis of O-Glycansof the N-acetylgalactosamine-alpha-Ser/ Thr linkage type. In: Montreuil J, Vliegenthart JFG, Schachter H (eds) Elsevier, Amsterdam, pp 201–250

    Google Scholar 

  • Buckhaults P, Chen L, Fregien N, Pierce M (1997) Transcriptional regulation of N-acetylglucosaminyltransferaseVbythesrconcogene.J Biol Chem 272: 19575–19581

    Google Scholar 

  • Burke J, Pettitt JM, Humphris D, Gleeson PA (1994) Medial-Golgi retention of N-acet-ylglucosaminyltransferase I. Contribution from all domains of the enzyme. J Biol Chem 269: 12049–12059

    Google Scholar 

  • Burke J, Pettitt JM, Schachter H, Sarkar M, Gleeson PA (1992) The transmembrane and flanking sequences of beta 1,2-N-acetylglucosaminyltransferase I specify medial-Golgi localization. J Biol Chem 267: 24433–24440

    Google Scholar 

  • Caffaro CE, Hirschberg CB (2006) Nucleotide sugar transporters of the Golgi apparatus: from basic science to diseases. Acc Chem Res 39: 805–812

    Google Scholar 

  • Campbell RM, Metzler M, Granovsky M, Dennis JW, Marth JD (1995) Complex aspara-gine-linked oligosaccharides in Mgat1-null embryos. Glycobiology 5: 535–543

    Google Scholar 

  • Caro LG, Palade GE (1964) Protein synthesis, storage, and discharge in the pancreatic exocrine cell. An autoradiographic study. J Cell Biol 20: 473–495

    Google Scholar 

  • Chapman E, Best MD, Hanson SR, Wong CH (2004) Sulfotransferases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angew Chem Int Ed 43: 3526–3548

    Google Scholar 

  • Chatterton JE, Hirsch D, Schwartz JJ, Bickel PE, Rosenberg RD, Lodish HF, Krieger M (1999) Expression cloning of LDLB, a gene essential for normal Golgi function and assembly of the 1d1Cp complex. Proc Natl Acad Sci USA 96: 915–920

    Google Scholar 

  • Chen C, Ma J, Lazic A, Backovic M, Colley KJ (2000) Formation of insoluble oligomers correlates with ST6Gal I stable localization in the Golgi. J Biol Chem 275: 13819–13826

    Google Scholar 

  • Cheung P, Pawling J, Partridge EA, Sukhu B, Grynpas M, Dennis JW (2007) Metabolic homeostasis and tissue renewal are dependent on beta1,6GlcNAc-branched N-glycans. Glycobiology 17: 828–837

    Google Scholar 

  • Chou DKH, Schachner M, Jungalwala FB (2002) HNK-1 sulfotransferase null mice express glucuronyl glycoconjugates and show normal cerebellar granule neuron migration in vivo and in vitro. J Neurochem 82: 1239–1251

    Google Scholar 

  • Colley KJ (1997) Golgi localization of glycosyltransferases: more questions than answers. Glycobiology 7: 1–13

    Google Scholar 

  • Colley KJ, Lee EU, Adler B, Browne JK, Paulson JC (1989) Conversion ofa Golgi apparatus sialyltransferase to a secretory protein by replacement of the NH2-terminal signal anchor with a signal peptide. J Biol Chem 264: 17619–17622

    Google Scholar 

  • Coste H, Martel MB, Got R (1986) Topology of glucosylceramide synthesis in Golgi membranes from porcine submaxillary glands. Biochim Biophys Acta 858: 6-12 Coutinho PM, Henrissat B (1999) Life with no sugars? J Mol Microbiol Biotechnol 1: 307–308

    Google Scholar 

  • D’Angelo G, Polishchuk E, DiTullio G, Santoro M, Di Campli A, Godi A, West G, Bielawski J, Chuang CC, Van der Spoel AC, Platt FM, Hannun YA, Polishchuk R, Mattjus P, De Matteis MA (2007) Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449: 62–67

    Google Scholar 

  • Dahdal RY, Colley KJ (1993) Specific sequences in the signal anchor of the beta-galactoside alpha-2,6-sialyltransferase are not essential for Golgi localization. Membrane flanking sequences may specify Golgi retention. J Biol Chem 268: 26310–26319

    Google Scholar 

  • Dalton AJ, Felix MD (1954) Cytologic and cytochemical characteristics of the Golgi substance of epithelial cells of the epididymis in situ, in homogenates and after isolation. Am J Anat 94: 171–207

    Google Scholar 

  • Datta AK, Paulson JC (1995) The sialyltransferase “sialylmotif ” participates in binding the donor substrate CMP-NeuAc. J Biol Chem 270: 1497–1500

    Google Scholar 

  • Datta AK, Sinha A, Paulson JC (1998) Mutation of the sialyltransferase S-sialylmotif alters the kinetics of the donor and acceptor substrates. J Biol Chem 273: 9608–9614

    Google Scholar 

  • Den H, Kaufman B, Roseman S (1970) Properties of some glycosyltransferases in embryonic chicken brain. J Biol Chem 245: 6607–6615

    Google Scholar 

  • Dennis JW (1988) Asn-linked oligosaccharide processing and malignant potential. Cancer Surv 7: 573–595

    Google Scholar 

  • Dinter A, Berger EG (1998) Golgi-disturbing agents. Histochem Cell Biol 109: 571–590

    Google Scholar 

  • El-Battari A, Prorok M, Angata K, Mathieu S, Zerfaoui M, Ong E, Suzuki M, Lombardo D, Fukuda M (2003) Different glycosyltransferases are differentially processed for secretion, dimerization, and autoglycosylation. Glycobiology 13: 941–953

    Google Scholar 

  • Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71: 435–471

    Google Scholar 

  • Evans SC, Lopez LC, Shur BD (1993) Dominant negative mutation in cell surface beta 1,4-galactosyl transferase inhibits cell-cell and cell-matrix interactions. J Cell Biol 120: 1045–1057

    Google Scholar 

  • Farquhar MG, Palade GE (1981) The Golgi apparatus (complex)-(1954-1981)-from artifact to center stage. J Cell Biol 91: 77S–103S

    Article  PubMed  CAS  Google Scholar 

  • Fenteany FH, Colley KJ (2005) Multiple signals are required for alpha2,6-sialyl-transferase (ST6Gal I) oligomerization and Golgi localization. J Biol Chem 280: 5423–5429

    Google Scholar 

  • Freeze HH (2006) Genetic defects in the human glycome. Nat Rev Genet 7: 537–551

    Google Scholar 

  • Gerber AC, Kozdrowski I, Wyss SR, Berger EG (1979) The charge heterogeneity of soluble human galactosyltransferases isolated from milk, amniotic fluid and malignant ascites. Eur J Biochem 93: 453–460

    Google Scholar 

  • Gu J, Taniguchi N (2004) Regulation of integrin functions by N-glycans. Glycoconj J 21: 9–15

    Google Scholar 

  • Hagopian A, Bosmann HB, Eylar EH (1968) Glycoprotein biosynthesis: the localization of polypeptidyl: N-acetylgalactosaminyl, collagen: glucosyl, and glycoprotein: galac-tosyl transferases in HeLa cell membrane fractions. Arch Biochem Biophys 128: 387–396

    Google Scholar 

  • Halter D, Neumann S, Van Dijk SM, Wolthoorn J, De Maziere AM, Vieira OV, Mattjus P, Klumperman J, Van Meer G, Sprong H (2007) Pre-and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J Cell Biol 179: 101–115

    Google Scholar 

  • Hancock SM, Vaughan MD, Withers SG (2006) Engineering of glycosidases and glycosyltransferases. Curr Opin Chem Biol 10: 509–519

    Google Scholar 

  • Hansen W, Grabenhorst E, Nimtz M, Muller K, Conradt HS, Wirth M (2005) Generation of serum-stabilized retroviruses: reduction of alpha1,3gal-epitope synthesis in a murine NIH3T3-derived packaging cell line by expression of chimeric glycosyltransferases. Metab Eng 7: 221–228

    Google Scholar 

  • Harduin-Lepers A, Mollicone R, Delannoy P, Oriol R (2005) The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach. Glycobiology 15: 805–817

    Google Scholar 

  • Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446: 1017–1022

    Google Scholar 

  • Hennet T (2002) The galactosyltransferase family. Cell Mol Life Sci 59: 1081–1095

    Google Scholar 

  • Herscovics A (1999) Importance of glycosidases in mammalian glycoprotein biosynthesis. Biochim Biophys Acta 1473: 96–107

    Google Scholar 

  • Herscovics A (2001) Structure and function of Class I alpha 1,2-mannosidases involved in glycoprotein synthesis and endoplasmic reticulum quality control. Biochimie 83: 757–762

    Google Scholar 

  • Higy M, Junne T, Spiess M (2004) Topogenesis of membrane proteins at the endoplasmic reticulum. Biochemistry 43: 12716–12722

    Google Scholar 

  • Hill RL, Brew K (1975) Lactose synthetase. Adv Enzymol Relat Areas Mol Biol 43: 411–490

    Google Scholar 

  • Ichikawa S, Hirabayashi Y (1998) Glucosylceramide synthase and glycosphingolipid synthesis. Trends Cell Biol 8: 198–202

    Google Scholar 

  • Ihara H, Ikeda Y, Toma S, Wang X, Suzuki T, Gu J, Miyoshi E, Tsukihara T, Honke K, Matsumoto A, Nakagawa A, Taniguchi N (2007) Crystal structure of mammalian alpha1,6-fucosyltransferase, FUT8. Glycobiology 17: 455–466

    Google Scholar 

  • Ikeda Y, Taniguchi N (2001) Enzymatic properties and biological functions of beta 1,4-N-acetylglucosaminyltransferase III. Trends Glycosci Glycotech 13: 167–176

    Google Scholar 

  • Inamori K, Mita S, Gu J, Mizuno-Horikawa Y, Miyoshi E, Dennis JW, Taniguchi N (2006) Demonstration of the expression and the enzymatic activity of N-acetylglucosami-nyltransferase IX in the mouse brain. Biochim Biophys Acta 1760: 678–684

    Google Scholar 

  • Ju T, Cummings RD (2002) A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proc Natl Acad Sci USA 99: 16613–16618

    Google Scholar 

  • Ju T, Cummings RD (2005) Protein glycosylation: chaperone mutation in Tn syndrome. Nature 437: 1252

    Google Scholar 

  • Kakuda S, Shiba T, Ishiguro M, Tagawa H, Oka S, Kajihara Y, Kawasaki T, Wakatsuki S, Kato R (2004) Structural basis for acceptor substrate recognition of a human glucuronyltransferase, GlcAT-P, an enzyme critical in the biosynthesis of the carbohydrate epitope HNK-1. J Biol Chem 279: 22693–22703

    Google Scholar 

  • Kaneko M, Alvarez-Manilla G, Kamar M, Lee I, Lee JK, Troupe K, Zhang W, Osawa M, Pierce M (2003) A novel beta(1,6)-N-acetylglucosaminyltransferase V (GnT-VB)(1). FEBS Lett 554: 515–519

    Google Scholar 

  • Kawatkar SP, Kuntz DA, Woods RJ, Rose DR, Boons GJ (2006) Structural basis of the inhibition of Golgi alpha-mannosidase II by mannostatin A and the role of the thiomethyl moiety in ligand-protein interactions. J Am Chem Soc 128: 8310–8319

    Google Scholar 

  • Kingsley DM, Kozarsky KF, Hobbie L, Krieger M (1986) Reversible defects in O-linked glycosylation and LDL receptor expression in a UDP-Gal/UDP-GalNAc 4-epimerase deficient mutant. Cell 44: 749–759

    Google Scholar 

  • Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54: 631–664

    Google Scholar 

  • Kudo M, Bao M, D’Souza A, Ying F, Pan H, Roe BA, Canfield WM (2005) The alpha-and beta-subunits of the human UDP-N-acetylglucosamine: lysosomal enzyme N-acet-ylglucosamine-1-phosphotransferase [corrected] are encoded by a single cDNA. J Biol Chem 280: 36141–36149

    Google Scholar 

  • Kweon H-S, Beznoussenko GV, Micaroni M, Polishchuk RS, Trucco A, Martella O, Di Giandomenico D, Marra P, Fusella A, Di Pentima A, Berger EG, Geerts WJ C, Koster AJ, Burger KN J, Luini A, Mironov AA (2004) Golgi enzymes are enriched in perforated zones of Golgi cisternae but are depleted in COPI vesicles. Mol Biol Cell 15: 4710–4724

    Google Scholar 

  • Lee EU, Roth J, Paulson JC (1989) Alteration of terminal glycosylation sequences on N-linked oligosaccharides of Chinese hamster ovary cells by expression of beta-galactoside alpha 2,6-sialyltransferase. J Biol Chem 264: 13848–13855

    Google Scholar 

  • Lorenz H, Hailey DW, Lippincott-Schwartz J (2006) Fluorescence protease protection of GFP chimeras to reveal protein topology and subcellular localization. Nat Methods 3: 205–210

    Google Scholar 

  • Louvard D, Reggio H, Warren G (1982) Antibodies to the Golgi complex and the rough endoplasmic reticulum. J Cell Biol 92: 92–107

    Google Scholar 

  • Lowe JB (1995) Molecular Basis of Human Blood Group Antigens. Plenum Press, New York

    Google Scholar 

  • Lu Q, Hasty P, Shur BD (1997) Targeted mutation in beta1,4-galactosyltransferase leads to pituitary insufficiency and neonatal lethality. Dev Biol 181: 257–267

    Google Scholar 

  • Ma B, Simala-Grant JL, Taylor DE (2006) Fucosylation in prokaryotes and eukaryotes. Glycobiology 16: 158R–184R

    Google Scholar 

  • Ma J, Qian R, Rausa FM, III, Colley KJ (1997) Two naturally occurring alpha2,6-sialyl-transferase forms with a single AA change in the catalytic domain differ in their catalytic activity and proteolytic processing. J Biol Chem 272: 672–679

    Google Scholar 

  • Marcus SL, Polakowski R, Seto NO, Leinala E, Borisova S, Blancher A, Roubinet F, Evans SV, Palcic MM (2003) A single point mutation reverses the donor specificity of human blood group B-synthesizing galactosyltransferase. J Biol Chem 278: 12403–12405

    Google Scholar 

  • Mast SW, Moremen KW (2006) Family 47 alpha-mannosidases in N-glycan processing. Methods Enzymol 415: 31–46

    Google Scholar 

  • Milland J, Russell SM, Dodson HC, McKenzie IF, Sandrin MS (2002) The cytoplasmictail of alpha 1,3-galactosyltransferase inhibits Golgi localization of the full-length enzyme. J Biol Chem 277: 10374–10378

    Google Scholar 

  • Milland J, Taylor SG, Dodson HC, McKenzie IF, Sandrin MS (2001) The cytoplasmic tail of alpha 1,2-fucosyltransferase contains a sequence for Golgi localization. J Biol Chem 276: 12012–12018

    Google Scholar 

  • Miyoshi E, Noda K, Yamaguchi Y, Inoue S, Ikeda Y, Wang W, Ko JH, Uozumi N, Li W, Taniguchi N (1999) The alpha1-6-fucosyltransferase gene and its biological significance. Biochim Biophys Acta 1473: 9–20

    Google Scholar 

  • Moremen KW (2002) Golgi alpha-mannosidase II deficiency in vertebrate systems: implications for asparagine-l inked oligosaccharide processing in mamma ls. Biochim Biophys Acta 1573: 225–235

    Google Scholar 

  • Munro S (1991) Sequences within and adjacent to the transmembrane segment of alpha-2,6-sialyltransferase specify Golgi retention. EMBO J 10: 3577–3588

    Google Scholar 

  • Munro S (1995) An investigation of the role of transmembrane domains in Golgi protein retention. EMBO J 14: 4695–4704

    Google Scholar 

  • Nagai K, Ihara Y, Wada Y, Taniguchi N (1997) N-glycosylation is requisite for the enzyme activity and Golgi retention of N-acetylglucosaminyltransferase III. Glycobiology 7: 769–776

    Google Scholar 

  • Narimatsu H, Sinha S, Brew K, Okayama H, Qasba PK (1986) Cloning and sequencing of cDNA of bovine N-acetylglucosamine (beta 1-4)galactosyltransferase. Proc Natl Acad Sci USA 83: 4720–4740

    Google Scholar 

  • Negishi M, Pedersen LG, Petrotchenko E, ShevtsovS, Gorokhov A, Kakuta Y, Pedersen LC (2001) Structure and function of sulfotransferases. Arch Biochem Biophys 390: 149–157

    Google Scholar 

  • Neutra M, Leblond CP (1966) Radioautographic comparison of the uptake of galactose-H and glucose-H3 in the Golgi region of various cells secreting glycoproteins or mucopolysaccharides. J Cell Biol 30: 137–150

    Google Scholar 

  • Nilsson T, Lucocq JM, Mackay D, Warren G (1991) The membrane spanning domain of beta-1,4-galactosyltransferase specifies trans Golgi localization. EMBO J 10: 3567–3575

    Google Scholar 

  • Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126:855–867

    Google Scholar 

  • Patel RY, Balaji PV (2007) Length and composition analysis of the cytoplasmic, trans-membrane and stem regions of human Golgi glycosyltransferases. Protein Pept Lett 14: 601–609

    Google Scholar 

  • Paulson J, Colley K (1989) Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. J Biol Chem 264: 17615–17618

    Google Scholar 

  • Pfeffer SR, Rothman JE (1987) Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu Rev Biochem 56: 829–852

    Google Scholar 

  • Piller F, Piller V, Fox RI, Fukuda M (1988) Human T-lymphocyte activation is associated with changes in O-glycan biosynthesis. J Biol Chem 263: 15146–15150

    Google Scholar 

  • Qasba PK, Ramakrishnan B, Boeggeman E (2005) Substrate-induced conformational changes in glycosyltransferases. Trends Biochem Sci 30: 53–62

    Google Scholar 

  • Qian R, Chen C, Colley KJ (2001) Location and mechanism of alpha 2,6-sialyltransferase dimer formation. Role of cysteine residues in enzyme dimerization, localization, activity, and processing. J Biol Chem 276: 28641–28649

    Google Scholar 

  • Rabouille C, Hui N, Hunte F, Kieckbusch R, Berger EG, Warren G, Nilsson T (1995) Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. J Cell Sci 108: 1617–1627

    Google Scholar 

  • Rhee SW, Starr T, Forsten-Williams K, Storrie B (2005) The steady-state distribution of glycosyltransferases between the Golgi Apparatus and the endoplasmicreticulum is approximately 90:10. Traffic 6: 978–990

    Google Scholar 

  • Rilla K, Siiskonen H, Spicer AP, Hyttinen JM, Tammi MI, Tammi RH (2005) Plasma membrane residence of hyaluronan synthase is coupled to its enzymatic activity. J Biol Chem 280: 31890–31897

    Google Scholar 

  • Roseman S (1970) The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chem Phys Lipids 5: 270–297

    Google Scholar 

  • Rosen SD (2004) Ligands for L-selectin: homing, inflammation, and beyond. Ann Rev Immunol 22: 129–156

    Google Scholar 

  • Roth J (1998) Topology of glycosylation in the Golgi Apparatus. In: Berger EG, Roth J (ed.) The Golgi Apparatus. Birkhauser, Basel Boston Berlin, pp 131–161

    Google Scholar 

  • Roth J, Berger EG (1982) Immunocytochemical localization of galactosyltransferase in HeLa cells: codistribution with thiamine pyrophosphatase in trans-Golgi cisternae. J Cell Biol 93: 223–229

    Google Scholar 

  • Roth J, Taatjes DJ (1998) Tubules of the trans Golgi apparatus visualized by immuno-electron microscopy. Histochem Cell Biol 109: 545–553

    Google Scholar 

  • Roth J, Taatjes DJ, Lucocq JM, Weinstein J, Paulson JC (1985) Demonstration of an extensive trans-tubular network continuous with the Golgi apparatus stack that may function in glycosylation. Cell 43: 287–295

    Google Scholar 

  • Rottger S, White J,Wandall HH, Olivo JC, Stark A Bennett EP, Whitehouse C, Berger EG, Clausen H, Nilsson T (1998) Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus. J Cell Sci 111: 45–60

    Google Scholar 

  • Russo RN, Shaper NL, Taatjes DJ, Shaper JH (1992) Beta 1,4-galactosyltransferase: a short NH2-terminal fragment that includes the cytoplasmic and transmembrane domain is sufficient for Golgi retention. J Biol Chem 267: 9241–9247

    Google Scholar 

  • Saito H, Gu J, Nishikawa A, Ihara Y, Fujii J, Kohgo Y, Taniguchi N (1995) Organization of the human N-acetylglucosaminyltransferase V gene. Eur J Biochem 233: 18–26

    Google Scholar 

  • Sasai K, Ikeda Y, Tsuda T, Ihara H, Korekane H, Shiota K, Taniguchi N (2001) The critical role of the stem region as a functional domain responsible for the oligomerization and Golgi localization of N-acetylglucosaminyltransferase V. The involvement of a domain homophilic interaction. J Biol Chem 276: 759–765

    Google Scholar 

  • Schachner M, Martini R, Hall H, Orberger G (1995) Functions of the L2/HNK-1 carbohydrate in the nervous system. Prog Brain Res 105: 183–188

    Google Scholar 

  • Schachter H (1986) Biosynthetic controls that determine the branching and microhe-terogeneity of protein-bound oligosaccharides. Biochem Cell Biol 64: 163–181

    Google Scholar 

  • Schachter H (2004) Protein glycosylation lessons from Caenorhabditis elegans. Curr Opin Struct Biol 14: 607–616

    Google Scholar 

  • Schaub BE, Berger B, Berger EG, Rohrer J (2006) Transition of galactosyltransferase 1 from trans-Golgi cisterna to the trans-Golgi network is signal mediated. Mol Biol Cell 17(12): 5153–5162

    Article  PubMed  CAS  Google Scholar 

  • Sewell R, Backstrom M, Dalziel M, Gschmeissner S, Karlsson H, Noll T, GatgensJ, Clausen H, Hansson GC, Burchell J, Taylor-Papadimitriou J (2006) The ST6GalNAc-I sialyl-transferase localizes throughout the Golgi and is responsible for the synthesis of the tumor-associated sialyl-Tn O-glycan in human breast cancer. J Biol Chem 281: 3586–3594

    Google Scholar 

  • Shaper NL, Shaper JH, Meuth JL, Fox JL, Chang H, Kirsch IR, Hollis GF (1986) Bovine galactosyltransferase: identification of a clone by direct immunological screening of a cDNA expression library. Proc Natl Acad Sci USA 83: 1573–1577

    Google Scholar 

  • Shur BD, Evans S, Lu Q (1998) Cell surface galactosyltransferase: current issues. Glycoconj J 15:537–548

    Google Scholar 

  • Sousa VL, Brito C, Costa J (2004) Deletion of the cytoplasmic domain of human alpha3/4 fucosyltransferase III causes the shift of the enzyme to early Golgi compartments. Biochim Biophys Acta 1675: 95–104

    Google Scholar 

  • Sousa VL, Brito C, Costa T, Lanoix J, Nilsson T, Costa J (2003) Importance of Cys, Gln, and Tyr from the transmembrane domain of human alpha 3/4 fucosyltransferase III for its localization and sorting in the Golgi of baby hamster kidney cells. J Biol Chem 278: 7624–7629

    Google Scholar 

  • Spiro RG (2004) Role of N-linked polymannose oligosaccharides in targeting glycoproteins for endoplasmic reticulum-associated degradation. Cell Mol Life Sci 61: 1025–1041

    Google Scholar 

  • Strous GJ, Berger EG (1982) Biosynthesis, intracellulartransport, and release of the Golgi enzyme galactosyltransferase (lactose synthetase A protein) in HeLa cells. J Biol Chem 257: 7623–7628

    Google Scholar 

  • Taatjes DJ, Roth J, Weinstein J, Paulson JC, Shaper NL, Shaper JH (1987) Codistribution of galactosyl-and sialyltransferase: reorganization of trans Golgi apparatus elements in hepatocytes in intact liver and cell culture. Eur J Cell Biol 44: 187–194

    Google Scholar 

  • Takamatsu S, Oguri S, Minowa MT, Yoshida A, Nakamura K, Takeuchi M, Kobata A (1999) Unusually high expression of N-acetylglucosaminyltransferase-IVa in human choriocarcinoma cel l l ines: a possible enzymatic basis of the formation of abnorma l biantennary sugar chain. Cancer Res 59: 3949–3953

    Google Scholar 

  • Tang BL, Wong SH, Low SH, Hong W (1992) The transmembrane domain of N-glu-cosaminyltransferase I contains a Golgi retention signal. J Biol Chem 267: 10122–10126

    Google Scholar 

  • Tassin AM, Paintrand M, Berger EG, Bornens M (1985) The Golgi apparatus remains associated with microtubule organizing centers during myogenesis. J Cell Biol 101: 630–638

    Google Scholar 

  • Teasdale RD, D’Agostaro G, Gleeson PA (1992) The signal for Golgi retention of bovine beta 1,4-galactosyltransferase is in the transmembrane domain. J Biol Chem 267: 13113

    Google Scholar 

  • Ten Hagen KG, Fritz TA Tabak LA (2003) All in the family: the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. Glycobiology 13: 1R–16R

    Google Scholar 

  • Thiele H, Sakano M, Kitagawa H, Sugahara K, Rajab A, Hohne W, Ritter H, Leschik G, Nurnberg P, Mundlos S (2004) Loss of chondroitin 6-O-sulfotransferase-1 function results in severe human chondrodysplasia with progressive spinal involvement. Proc Natl Acad Sci USA 101: 10155–10160

    Google Scholar 

  • Tiede S, Storch S, Lubke T, Henrissat B, Bargal R, Raas-Rothschild A, Braulke T (2005) Mucolipidosis II is caused by mutations in GNPTA encoding the alpha/beta G lcNAc-1-phosphotransferase. Nat Med 11: 1109–1112

    Google Scholar 

  • Uliana AS, Giraudo CG, Maccioni HJ (2006) Cytoplasmic tails of SialT2 and GalNAcT impose their respective proximal and distal Golgi localization. Traffic 7: 604–612

    Google Scholar 

  • Ungar D, Oka T, Brittle EE, Vasile E, Lupashin VV, Chatterton JE, Heuser JE, Krieger M, Waters MG (2002) Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J Cell Biol 157: 405–415

    Google Scholar 

  • Varki A (1998) Factors controlling the glycosylation potential of the Golgi apparatus. Trends Cell Biol 8: 34–40

    Google Scholar 

  • Varki A (2006) Nothing in glycobiology makes sense, except in the light of evolution. Cell 126: 841–845

    Google Scholar 

  • Wandall HH, Irazoqui F, Tarp MA, Bennett EP, Mandel U, Takeuchi H, Kato K, Irimura T, Suryanarayanan G, Hollingsworth MA, Clausen H (2007) The lectin domains of polypeptide GalNAc-transferases exhibit carbohydrate-binding specificity for GalNAc: lectin binding to GalNAc-glycopeptide substrates is required for high density GalNAc-O-glycosylation. Glycobiology 17: 374–387

    Google Scholar 

  • Warren L, Buck CA, Tuszynski GP(1978) Glycopeptide changes and malignant transformation. A possible role for carbohydrate in malignant behavior. Biochim Biophys Acta 516: 97–127

    Google Scholar 

  • Weinstein J, Lee EU, McEntee K, Lai PH, Paulson JC (1987) Primary structure of beta-galactoside alpha 2,6-sialyltransf erase. Conversion of membrane-bound enzyme to soluble forms by cleavage of the NH2-terminal signal anchor. J Biol Chem 262: 17735–17743

    Google Scholar 

  • Wu X, Steet RA, Bohorov O, Bakker J, Newell J, Krieger M, Spaapen L, Kornfeld S, Freeze HH (2004) Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder. Nat Med 10: 518–523

    Google Scholar 

  • Xia L, Ju T, Westmuckett A, An G, Ivanciu L, McDaniel JM, Lupu F, Cummings RD, McEver RP (2004) Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans. J Cell Biol 164: 451–459

    Google Scholar 

  • Yamamoto F, Clausen H, White T, Marken J, Hakomori S (1990) Molecular genetic basis of the histo-blood group ABO system. Nature 345: 229–233

    Google Scholar 

  • Yamamoto S, Oka S, Inoue M, Shimuta M, Manabe T, Takahashi M, Miyamoto M, Asano M, Sakagami J, Sudo K, Iwakura Y, Ono K, Kawasaki T (2002) Mice deficient in nervous system-specific carbohydrate epitope HNK-1 exhibit impaired synaptic plasticity and spatial learning. J Biol Chem 277: 27227–27231

    Google Scholar 

  • Yoshida A, Minowa MT, Takamatsu S, Hara T, Ikenaga H, Takeuchi M (1998) A novel second isoenzyme of the human UDP-N-acetylglucosamine:alpha1,3-D-mannoside beta1,4-N-acetylglucosaminyltransferase family: cDNA cloning, expression, and chromosomal assignment. Glycoconj J 15: 1115–1123

    Google Scholar 

  • Zaal KJ, Smith CL, Polishchuk RS, Altan N, Cole NB, Ellenberg J, Hirschberg K, Presley JF, Roberts TH, Siggia E, Phair RD, Lippincott-Schwartz J (1999) Golgi membranes are absorbed into and reemerge from the ER during mitosis. Cell 99: 589–601

    Google Scholar 

  • Zerfaoui M, Fukuda M, Langlet C, Mathieu S, Suzuki M, Lombardo D, El-Battari A (2002) The cytosolic and transmembrane domains of the beta 1,6 N-acetylglucosaminyl-transferase (C2GnT) function as a cis to medial/Golgi-targeting determinant. Glycobiology 12: 15–24

    Google Scholar 

  • Zhang W, Betel D, Schachter H (2002) Cloning and expression of a novel UDP-GlcNAc: alpha-d-mannoside beta1,2-N-acetylglucosaminyltransferase homologous to UDP-GlcNAc:alpha-3-d-mannoside beta1,2-N-acetylglucosaminyltransferase I. Biochem J 361: 153–162

    Google Scholar 

  • Zhang W, Revers L, Pierce M, Schachter H (2000) Regulation of expression of the human beta-1,2-N-acetylglucosaminyltransferase II gene (MGAT2) by Ets transcription factors. Biochem J 347: 511–518

    Google Scholar 

  • Zhao Y, Nakagawa T, Itoh S, Inamori K, Isaji T, Kariya Y, Kondo A Miyoshi E, Miyazaki K, Kawasaki N, Taniguchi N, Gu J (2006) N-acetylglucosaminyltransferase III antagonizes the effect of N-acetylglucosaminyltransferase V on alpha3beta1 integrin-mediated cell migration. J Biol Chem 281: 32122–32130

    Google Scholar 

  • Zhu G, Jaskiewicz E, Bassi R, Darling DS, Young WW, Jr (1997) Beta 1,4 N-acetylgalacto-saminyltransferase (GM2/GD2/GA2 synthase) forms homodimers in the endoplas-mic reticulum: a strategy to test for dimerization of Golgi membrane proteins. Glycobiology 7: 987–996

    Google Scholar 

  • Zolov SN, Lupashin W (2005) Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells. J Cell Biol 168: 747–759

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this chapter

Cite this chapter

Berger, E.G., Rohrer, J. (2008). Golgi glycosylation enzymes. In: Mironov, A.A., Pavelka, M. (eds) The Golgi Apparatus. Springer, Vienna. https://doi.org/10.1007/978-3-211-76310-0_12

Download citation

Publish with us

Policies and ethics