Skip to main content

Bilirubin oxidation products (BOXes): synthesis, stability and chemical characteristics

  • Conference paper
  • First Online:
Cerebral Vasospasm

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 104))

Abstract

Bilirubin oxidation products (BOXes) have been a subject of interest in neurosurgery because they are purported to be involved in subarachnoid hemorrhage induced cerebral vasospasm. There is a growing body of information concerning their putative role in vasospasm; however, there is a dearth of information concerning the chemical and biochemical characteristics of BOXes. A clearer understanding of the synthesis, stability and characteristics of BOXes will be important for a better understanding of the role of BOXes post subarachnoid hemorrhage.

We used hydrogen peroxide to oxidize bilirubin and produce BOXes. BOXes were extracted and analyzed using conventional methods such as HPLC and mass spectrometry. Characterization of the stability of BOXes demonstrates that light can photodegrade BOXes with a t1/2 of up to 10 h depending upon conditions. Mixed isomers of BOXes have an apparent extinction coefficient of ε = 6985, and a λ max of 310 nm.

BOXes are produced by the oxidation of bilirubin, yielding a mixture of isomers: 4-methyl-5-oxo-3-vinyl-(1,5-dihydropyrrol-2-ylidene)acetamide (BOX A) and 3-methyl-5-oxo-4-vinyl-(1,5-dihydropyrrol-2-ylidene) acetamide (BOX B). The BOXes are photodegraded by ambient light and can be analyzed spectrophotometrically with their extinction coefficient as well as with HPLC or mass spectrometry. Their small molecular weight and photodegradation may have made them difficult to characterize in previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Awasthi S, Boor PJ (1994) Lipid peroxidation and oxidative stress during acute allylamine-induced cardiovascular toxicity. J Vasc Res 31: 33–41

    CAS  PubMed  Google Scholar 

  2. Cadoux-Hudson TAD, Pyne GJ, Domingo Z, Clark JF (2001) The stimulation of vascular smooth muscle oxidative metabolism by CSF from subarachnoid haemorrhage patients increases with Fisher and WFNS grades. Acta Neurochir (Wien) 143: 65–72

    CAS  PubMed  Google Scholar 

  3. Clark JF, Reilly M, Sharp FR (2002) Oxidation of bilirubin produces compounds that cause prolonged vasospasm of rat cerebral vessels: a contributor to subarachnoid hemorrhage-induced vasospasm. J Cereb Blood Flow Metab 22: 472–478

    CAS  PubMed  Google Scholar 

  4. Clark JF, Sharp FR. Bilirubin oxidation products (BOXes) and their role in cerebral vasospasm after subarachnoid hemorrhage (2006) J Cereb Blood Flow Metab 8: 8

    Google Scholar 

  5. De Matteis F, Lord GA, Kee Lim C, Pons N (2006) Bilirubin degradation by uncoupled cytochrome P450. Comparison with a chemical oxidation system and characterization of the products by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 20: 1209–1217

    PubMed  Google Scholar 

  6. Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324: 1–18

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dubois-Rande JL, Artigou JY, Darmon JY, Habbal R, Manuel C, Tayarani I, Castaigne A, Grosgogeat Y (1994) Oxidative stress in patients with unstable angina. Eur Heart J 15: 179–183

    CAS  PubMed  Google Scholar 

  8. Duff TA, Feilbach JA, Yusuf Q, Scott G (1988) Bilirubin and the induction of intracranial arterial spasm. J Neurosurg 69: 593–598

    CAS  PubMed  Google Scholar 

  9. Findlay JM, Macdonald RL, Weir BK (1991) Current concepts of pathophysiology and management of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Cerebrovasc Brain Metab Rev 3: 336–361

    CAS  PubMed  Google Scholar 

  10. Foley PL, Takenaka K, Kassell NF, Lee KS (1994) Cytotoxic effects of bloody cerebrospinal fluid on cerebral endothelial cells in culture. J Neurosurg 81: 87–92

    CAS  PubMed  Google Scholar 

  11. Genet S, Kale RK, Baquer NZ (2000) Effects of free radicals on cytosolic creatine kinase activities and protection by antioxidant enzymes and sulfhydryl compounds [In Process Citation]. Mol Cell Biochem 210: 23–28

    CAS  PubMed  Google Scholar 

  12. Glenner GG (1957) Simultaneous demonstration of bilirubin, hemosiderin, and lipofuscin pigments in tissue sections. Am J Clin Pathol 27: 1–5

    CAS  PubMed  Google Scholar 

  13. Haddad IY, Crow JP, Hu P, Ye Y, Beckman J, Matalon S (1994) Concurrent generation of nitric oxide and superoxide damages surfactant protein A. Am J Physiol 267: L242–L249

    CAS  PubMed  Google Scholar 

  14. Haddad IY, Pataki G, Hu P, Galliani C, Beckman JS, Matalon S (1994) Quantitation of nitrotyrosine levels in lung sections of patients and animals with acute lung injury. J Clin Invest 94: 2407–2413

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hansen TW (2000) Bilirubin oxidation in brain [In Process Citation]. Mol Genet Metab 71: 411–417

    CAS  PubMed  Google Scholar 

  16. Hansen TW, Allen JW (2000) Bilirubin oxidation by brain mitochondrial membranes is not affected by hyperosmolality. Biol Neonate 78: 68–69

    CAS  PubMed  Google Scholar 

  17. Hansen TW, Allen JW (1997) Oxidation of bilirubin by brain mitochondrial membranes-dependence on cell type and postnatal age. Biochem Mol Med 60: 155–160

    CAS  PubMed  Google Scholar 

  18. Hansen TW, Tommarello S, Allen JW (1997) Oxidation of bilirubin by rat brain mitochondrial membranes-genetic variability. Biochem Mol Med 62: 128–131

    CAS  PubMed  Google Scholar 

  19. Hubel CA (1999) Oxidative stress in the pathogenesis of preeclampsia. Proc Soc Exp Biol Med 222: 222–235

    CAS  PubMed  Google Scholar 

  20. Itoh S, Isobe K, Onishi S (1999) Accurate and sensitive highperformance liquid chromatographic method for geometrical and structural photoisomers of bilirubin IX alpha using the relative molar absorptivity values. J Chromatogr A 848: 169–177

    CAS  PubMed  Google Scholar 

  21. Koufen P, Ruck A, Brdiczka D, Wendt S, Wallimann T, Stark G (1999) Free radical-induced inactivation of creatine kinase: influence on the octameric and dimeric states of the mitochondrial enzyme (Mib-CK). Biochem J 344 (Pt 2): 413–417

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kranc KR, Pyne GJ, Tao L, Claridge TDW, Harris DA, Cadoux-Hudson TAD, Turnbull JJ, Schofield CJ, Clark JF (2000) Oxidative degradation of bilirubin produces vasoactive compounds. European J Biochem 267: 7094–7101

    CAS  Google Scholar 

  23. Liu GY, Chen KJ, Lin-Shiau SY, Lin JK (1999) Peroxyacetyl nitrate-induced apoptosis through generation of reactive oxygen species in HL-60 cells. Mol Carcinog 25: 196–206

    CAS  PubMed  Google Scholar 

  24. Luzar B, Gasljevic G, Juricic V, Bracko M (2006) Hemosiderotic fibrohistiocytic lipomatous lesion: early pleomorphic hyalinizing angiectatic tumor? Pathol Int 56: 283–286

    PubMed  Google Scholar 

  25. Lyons MA, Shukla R, Zhang K, Pyne GJ, Singh M, Biehle SJ, Clark JF (2004) Increase of metabolic activity and disruption of normal contractile protein distribution by bilirubin oxidation products in vascular smooth-muscle cells. J Neurosurg 100: 505–511

    CAS  PubMed  Google Scholar 

  26. Macdonald RL, Weir BK, Runzer TD, Grace MG (1992) Malondialdehyde, glutathione peroxidase, and superoxide dismutase in cerebrospinal fluid during cerebral vasospasm in monkeys. Can J Neurol Sci 19: 326–332

    CAS  PubMed  Google Scholar 

  27. Macdonald RL, Weir BK, Runzer TD, Grace MG, Findlay JM, Saito K, Cook DA, Mielke BW, Kanamaru K (1991) Etiology of cerebral vasospasm in primates [see comments]. J Neurosurg 75: 415–424

    CAS  PubMed  Google Scholar 

  28. Matz P, Turner C, Weinstein PR, Massa SM, Panter SS, Sharp FR (1996) Heme-oxygenase-1 induction in glia throughout rat brain following experimental subarachnoid hemorrhage. Brain Res 713: 2226

    Google Scholar 

  29. Mayberg MR (1998) Cerebral vasospasm. Neurosurg Clin N Am 9: 615–627

    CAS  PubMed  Google Scholar 

  30. Miao FJ, Lee TJ (1989) Effects of bilirubin on cerebral arterial tone in vitro. J Cereb Blood Flow Metab 9: 666–674

    CAS  PubMed  Google Scholar 

  31. Morgan CJ, Pyne-Geithman GJ, Jauch EC, Shukla R, Wagner KR, Clark JF, Zuccarello M (2004) Bilirubin as a cerebrospinal fluid marker of sentinel subarachnoid hemorrhage: a preliminary report in pigs. J Neurosurg 101: 1026–1029

    CAS  PubMed  Google Scholar 

  32. Morooka H (1978) Cerebral arterial spasm. II. Etiology and treatment of experimental cerebral vasospasm. Acta Med Okayama 32: 39–49

    CAS  PubMed  Google Scholar 

  33. Neuzil J, Gebicki JM, Stocker R (1993) Radical-induced chain oxidation of proteins and its inhibition by chain-breaking antioxidants. Biochem J 293: 601–606

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Neuzil J, Stocker R (1993) Bilirubin attenuates radical-mediated damage to serum albumin. FEBS Lett 331: 281–284

    CAS  PubMed  Google Scholar 

  35. Okada H, Masuya K, Kurono Y, Nagano K, Okubo K, Yasuda S, Kawasaki A, Kawada K, Kusaka T, Namba M, Nishida T, Imai T, Isobe K, Itoh S (2004) Change of bilirubin photoisomers in the urine and serum before and after phototherapy compared with light source. Pediatr Int 46: 640–644

    CAS  PubMed  Google Scholar 

  36. Pluta RM (2005) Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment. Pharmacol Ther 105: 23–56

    CAS  PubMed  Google Scholar 

  37. Pyne GJ, Cadoux-Hudson TAD, Clark JF (2001) Cerebrospinal fluid from subarachnoid haemorrhage patients causes excessive oxidative metabolism compared to vascular smooth muscle force generation. Acta Neurochir (Wien) 143: 59–63

    CAS  PubMed  Google Scholar 

  38. Pyne-Geithman GJ, Morgan CJ, Wagner K, Dulaney EM, Carrozzella J, Kanter DS, Zuccarello M, Clark JF (2005) Bilirubin production and oxidation in CSF of patients with cerebral vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab 23: 23

    Google Scholar 

  39. Qanungo S, Sen A, Mukherjea M (1999) Antioxidant status and lipid peroxidation in human feto-placental unit. Clin ChimActa 285: 1–12

    CAS  Google Scholar 

  40. Rhoades RA, Packer CS, Roepke DA, Jin N, Meiss RA (1990) Reactive oxygen species alter contractile properties of pulmonary arterial smooth muscle. Can J Physiol Pharmacol 68: 1581–1589

    CAS  PubMed  Google Scholar 

  41. Rodriguez-Martinez MA, Alonso MJ, Redondo J, Salaices M, Marin J (1998) Role of lipid peroxidation and the glutathionedependent antioxidant system in the impairment of endotheliumdependent relaxations with age. Br J Pharmacol 123: 113–121

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Stanek J, Eis AL, Myatt L (2001) Nitrotyrosine immunostaining correlates with increased extracellular matrix: evidence of postplacental hypoxia. Placenta 22: S56–S62

    PubMed  Google Scholar 

  43. Stocker R, Glazer AN, Ames BN (1987) Antioxidant activity of albumin-bound bilirubin. Proc Natl Acad Sci USA 84: 5918–5922

    CAS  PubMed  Google Scholar 

  44. Stocker R, McDonagh AF, Glazer AN, Ames BN (1990) Antioxidant activities of bile pigments: biliverdin and bilirubin. Methods Enzymol 186: 301–309

    CAS  PubMed  Google Scholar 

  45. Stocker R, Peterhans E (1989) Antioxidant properties of conjugated bilirubin and biliverdin: biologically relevant scavenging of hypochlorous acid. Free Radic Res Commun 6: 57–66

    CAS  PubMed  Google Scholar 

  46. Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235: 1043–1046

    CAS  PubMed  Google Scholar 

  47. Trost GR, Nagatani K, Goknur AB, Haworth RA, Odell GB, Duff TA (1993) Bilirubin levels in subarachnoid clot and effects on canine arterial smooth muscle cells. Stroke 24: 1241–1245

    CAS  PubMed  Google Scholar 

  48. White CR, Brock TA, Chang LY, Crapo J, Briscoe P, Ku D, Bradley WA, Gianturco SH, Gore J, Freeman BA et al (1994) Superoxide and peroxynitrite in atherosclerosis. Proc Natl Acad Sci USA 91: 1044–1048

    CAS  PubMed  Google Scholar 

  49. Yamaguchi T, Shioji I, Sugimoto A, Komoda Y, Nakajima H (1994) Chemical structure of a new family of bile pigments from human urine. J Biochem (Tokyo) 116: 298–303

    CAS  PubMed  Google Scholar 

  50. Yamamoto H, Hirose K, Hayasaki Y, Masuda M, Kazusaka A, Fujita S (1999) Mechanism of enhanced lipid peroxidation in the liver of Long-Evans cinnamon (LEC) rats. Arch Toxicol 73: 457–464

    CAS  PubMed  Google Scholar 

  51. Yesilkaya A, Yegin A, Ozdem S, Aksu TA (1998) The effect of bilirubin on lipid peroxidation and antioxidant enzymes in cumene hydroperoxide-treated erythrocytes. Int J Clin Lab Res 28: 230–234

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph F. Clark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this paper

Cite this paper

Wurster, W.L., Pyne-Geithman, G.J., Peat, I.R., Clark, J.F. (2008). Bilirubin oxidation products (BOXes): synthesis, stability and chemical characteristics. In: Kırış, T., Zhang, J.H. (eds) Cerebral Vasospasm. Acta Neurochirurgica Supplement, vol 104. Springer, Vienna. https://doi.org/10.1007/978-3-211-75718-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-75718-5_8

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-75717-8

  • Online ISBN: 978-3-211-75718-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics