Skip to main content

Der kalorische Wendetest

  • Conference paper

Zusammenfassung

Die kalorische Prüfung wird gemeinhin als Labyrinthfunktionstest angesehen. Unter Berücksichtigung neuerer Ergebnisse der Neurootologie kann die kalorische Prüfung und Lagerung von der Optimumposition nach Hallpike (Supination) in die Pronation zur Funktionsprüfung des Utriculus zusätzlich zur Funktionsprüfung des lateralen Bogengangs beitragen. Diese klinische Prüfung ist selbst bei Vorliegen von Spontannystagmus und/oder Lagenystagmus stabil auszuwerten. Elektronystagmografische wie videookulografische Verfahren sind gleichermaßen geeignet. Für die quantitative Bewertung der kalorischen Reaktion in Supination und Pronation (kalorischer Wendetest) steht ein statistisch gesichertes Befundnomogramm zur Verfügung. Die Korrelation von Befunden des kalorischen Wendetests und der ipsilateral abgeleiteten Befunde vestibulär evozierter myogener Potenziale (VEMP) an 123 Patienten ergibt, dass die Sacculusfunktion keinen erkennbaren Einfluss auf das Ergebnis des kalorischen Wendetests besitzt. Der kalorische Wendetest ist daher zur Labyrinthfunktionsprüfung vor allem in Fällen geeignet, in denen der Kopf-Impuls-Test allein kein hinreichend sicheres Ergebnis erbringt oder durch Spontan- oder Lagenystagmus eingeschränkt beurteilbar ist. Der kalorische Wendefest liefert in cumulo einen seitengetrennten quantitativen Befund zu den Funktionszuständen des lateralen Bogengangs und des Utriculus

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aoki S, Arai Y, Ide N, Sugiura E, Miyajima K (2006) The clinical significance of the caloric second phase provoked by positional change in vertiginous patients. Int Tinnitus J 12: 115–120

    PubMed  Google Scholar 

  • Arai Y (2001) A new light on caloric test-what was disclosed by three dimensional analysis of caloric nystagmus? Biol Sci Space 15: 387–392

    Article  CAS  PubMed  Google Scholar 

  • Arai Y, Yakushin SB, Cohen B, Suzuki J, Raphan T (2002) Spatial orientation of caloric nystagmus in semicircular canal-plugged monkeys. J Neurophysiol 88: 914–928

    PubMed  Google Scholar 

  • Bohmer A, Straumann D, Henn V, Arai Y, Suzuki J (1995) Effects of semicircular canal plugging on caloric nystagmus recorded in three dimensions. Acta Otolaryngol Suppl 520 Pt 1: 178–180

    Article  PubMed  Google Scholar 

  • Cannon SC, Robinson DA (1987) Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. J Neurophysiol 57: 1383–1409

    CAS  PubMed  Google Scholar 

  • Clarke AH, Teiwes W, Oelhafen P, Scherer H (1993) Three-dimensional aspects of caloric nystagmus in humans: I. The influence of increased gravitoinertial force. Acta Otolaryngol 113: 687–692

    Article  CAS  PubMed  Google Scholar 

  • Clarke AH, Teiwes W, Scherer H (1992) Variation of gravitoinertial force and its influence on ocular torsion and caloric nystagmus. Ann N Y Acad Sci 656: 820–822

    Article  CAS  PubMed  Google Scholar 

  • Clarke A H, Waldmann K, Scherer H (1993) Three-dimensional aspects of caloric nystagmus in humans: II. Caloric-induced torsional deviation. Acta Otolaryngol 113: 693–698

    Article  CAS  PubMed  Google Scholar 

  • Coats AC, Smith SY (1967) Body position and the intensity of caloric nystagmus. Acta Otolaryngol 63: 515–532

    Article  CAS  PubMed  Google Scholar 

  • Demer JL, Robinson DA (1983) Different time constants for optokinetic and vestibular nystagmus with a single velocity-storage element. Brain Res 276: 173–177

    Article  CAS  PubMed  Google Scholar 

  • Duwel P, Ilgner J, Engelke JC, Westhofen M (2004) Subclassification of vestibular disorders by means of statistical analysis in caloric labyrinth testing. Acta Otolaryngol 124: 595–602

    Article  PubMed  Google Scholar 

  • Feldmann H, Huttenbrink KB, Delank KW (1991) Transport of heaf in caloric vestibular stimulation. Conduction, convection or radiation? Acta Otolaryngol 111: 169–175

    Article  CAS  PubMed  Google Scholar 

  • Fetter M, Zee DS (1988) Recovery from unilateral labyrinthectomy in rhesus monkey. J Neurophysiol 59: 370–393

    CAS  PubMed  Google Scholar 

  • Formby C, Robinson DA (2000) Measurement of vestibular ocular reflex (VOR) time constants with a caloric step stimulus J Vestib Res 10: 25–39

    CAS  PubMed  Google Scholar 

  • Hain TC, Zee DS (1992) Velocity storage in labyrinthine disorders. Ann N Y Acad Sci 656: 297–304

    Article  CAS  PubMed  Google Scholar 

  • Hood JD (1989) Evidence of direct thermal action upon the vestibular receptors in the caloric test. A re-interpretation of the data of Coats and Smith. Acta Otolaryngol 107: 161–165

    Article  CAS  PubMed  Google Scholar 

  • Jacobson GP, McCaslin DL, Patel S, Barin K, Ramadan NM (2004) Functional and anatomical correlates of impaired velocity storage. J Am Acad Audiol 15: 324–333

    Article  PubMed  Google Scholar 

  • Lafortune SH, Ireland DJ, Jell RM (1990) Suppression of optokinetic velocity storage in humans by static tilt in roll. J Vestib Res 1: 347–355

    PubMed  Google Scholar 

  • Lebender M (1995) Thermische Prüfung in Pronation und Supination — Nomogramme und klinische Anwendung. Inaugural Dissertation Hamburg 1995

    Google Scholar 

  • Marcus JT, Bles W, Van Holten CR (1989) Influence of gravitoinertial force on vestibular nystagmus in man observed in a centrifuge. Adv Space Res 9: 213–222

    Article  CAS  PubMed  Google Scholar 

  • McNally WJ, Stuart EA, Jamieson JS, Gaulton G (1947) Some experiments with caloric stimulation of the human labyrinth to study the relative values of ampullo-petal and ampullo-fugal endolymphatic flow (Ewald’s Laws). Trans Amer Acad Ophthal Otolaryngol 52: 513–41

    Google Scholar 

  • Merfeld DM, Zupan LH (2002) Neural processing of gravitoinertial cues in humans. III. Modeling tilt and translation responses. J Neurophysiol 87: 819–833

    CAS  PubMed  Google Scholar 

  • Minor LB, Goldberg JM (1990) Influence of static head position on the horizontal nystagmus evoked by caloric, rotational and optokinetic stimulation in the squirrel monkey. Exp Brain Res 82: 1–13

    Article  CAS  PubMed  Google Scholar 

  • Mulch G, Leonardy B (1977) The validity of absolute “standard values” for the evaluation of the thermic vestibular test-results from electronystag-mographic investigations with critical comment on the frequency nystagmogram (butterfly scheme) (author’s transl)]. Laryngol Rhinol Otol (Stuttg) 56: 376–383

    CAS  Google Scholar 

  • Mulch G, Scherer H (1980) Thermische Prüfung. 26–34. Gräfelfing, Demeter. HNO-Informationen Sonderheft.

    Google Scholar 

  • Muller-Deile J, Reker U, Zell E (1986) Significance of the Barany convection hypothesis for thermal nystagmus. Quantitative comparison of the intensity of thermal nystagmus in supine and prone position. Laryngol Rhinol Otol (Stuttg) 65: 154–157

    Article  CAS  Google Scholar 

  • Owada K, Shigehiko S (1960) The eye movement as a saccular function. Acta Otolaryngol 52: 63–71

    Article  CAS  PubMed  Google Scholar 

  • Owada K, Shigehiko S, Kimura M (1960) The influence of the utricle on Nystagmus. Acta Otolaryngol 52: 215–220

    Article  CAS  PubMed  Google Scholar 

  • Paige GD (1985) Caloric responses after horizontal canal inactivation. Acta Otolaryngol 100: 321–327

    Article  CAS  PubMed  Google Scholar 

  • Peterka RJ, Gianna-Poulin CC, Zupan LH, Merfeld DM (2004) Origin of orientation-dependent asymmetries in vestibulo-ocular reflexes evoked by caloric stimulation. J Neurophysiol 92: 2333–2345

    Article  PubMed  Google Scholar 

  • Raphan T, Matsuo V, Cohen B (1979) Velocity storage in the vestibulo-ocular reflex arc (VOR). Exp Brain Res 35: 229–248

    Article  CAS  PubMed  Google Scholar 

  • Raphan T, Schnabolk C (1988) Modeling slow phase velocity generation during off-vertical axis rotation. Ann N Y Acad Sci 545: 29–50

    Article  CAS  PubMed  Google Scholar 

  • Rodenburg M, Maas AJ (1977) Psychophysical determination of the phase characteristic of the vestibular system of man for sinusoidal oscillation in yaw. ORL J Otorhinolaryngol Relat Spec 39: 82–93

    CAS  PubMed  Google Scholar 

  • Scherer H (1984) Thermal reaction in weightlessness in outer space. Observations on Robert Baranys’ theory. Arch Otorhinolaryngol 2 (Suppl): 1–16

    Google Scholar 

  • Scherer H, Clarke AH (1985) The caloric vestibular reaction in space. Physiological considerations. Acta Otolaryngol 100: 328–336

    Article  CAS  PubMed  Google Scholar 

  • Scherer H, Helling K (2001) Thermische Prüfung. In: Westhofen M (Hrsg.) Vestibuläre Untersuchungs-methoden. PW Science Publications, Ratingen, S 63–69

    Google Scholar 

  • von Behrmann W (1940) Über Indifferenzlagen und Nystagmusbefunde. Acta Otolaryngol Suppl 40: 1–61

    Google Scholar 

  • Wade SW, Halmagyi GM, Black FO, McGarvie LA (1999) Time constant of nystagmus slow-phase velocity to yaw-axis rotation as a function of the severity of unilateral caloric paresis. Am J Otol 20: 471–478

    CAS  PubMed  Google Scholar 

  • Waespe W, Schwarz U (1986) Characteristics of eye velocity storage during periods of suppression and reversal of eye velocity in monkeys. Exp Brain Res 65: 49–58

    Article  CAS  PubMed  Google Scholar 

  • Westhofen M (Hrsg.) (2001) Vestibuläre Untersuchungsmethoden. PW Science Publications

    Google Scholar 

  • Ratingen Westhofen M (2007) Otolith-ocular responses in Meniere’s patients before and after endolymphatic shunt operation. J Vestib Res (im Druck)

    Google Scholar 

  • Westhofen M (1987) Balloon method and water irrigation in thermal vestibular assessment. Electronystagmographic comparison of both methods. Laryngol Rhinol Otol (Stuttg) 66: 424–427

    Article  CAS  Google Scholar 

  • Westhofen M (1989) Neuartige vollautomatische Elektronystagmografie — Befundung, Grundlage und klinische Anwendung. Habilitationsschrift Universität Hamburg 1989

    Google Scholar 

  • Westhofen M (1997) Follow-up of caloric response after acute peripheral dysfunction. HNO45: 112–113

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this paper

Cite this paper

Westhofen, M. (2008). Der kalorische Wendetest. In: Scherer, H. (eds) Der Gleichgewichtssinn. Springer, Vienna. https://doi.org/10.1007/978-3-211-75432-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-75432-0_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-75431-3

  • Online ISBN: 978-3-211-75432-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics