Skip to main content

Wirkung von Transmittern im vestibulären System

  • Conference paper
Der Gleichgewichtssinn

Zusammenfassung

Im vestibulären System sind 2 Arten von Sinneszelllagern zu finden: Crista ampullaris in jedem der 3 Bogengänge und Macula utriculi und sacculi in den beiden Otolithenorganen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Anniko M, Arnold W (1991) Acetylcholine receptor localization in human adult cochlear and vestibular hair cells. Acta Otolaryngol 111: 491–499

    Article  CAS  PubMed  Google Scholar 

  • Annoni JM, Cochran SL, Precht W (1984) Pharmacology of the vestibular hair cell-afferent fiber synapse in the frog. J Neurosci 4: 2106–2116

    CAS  PubMed  Google Scholar 

  • Beitz AJ, Anderson JH (2000) Neurochemistry of the vertibular system. Boca Raton, London, New York, Washington D.C.: CRC Press.

    Google Scholar 

  • Bernard C, Cochran SL, Precht W (1985) Presynaptic actions of cholinergic agents upon the hair cell afferent fiber synapse in the vestibular labyrinth of the frog. Brain Res 338: 225–236

    Article  CAS  PubMed  Google Scholar 

  • Carpenter MB, Chang L, Pereira AB, Hersh LB (1987) Comparison of the immunocytochemical localization of choline acetyltransferase in the vetibular nuclei of the monkey and rat. Brain Res 418: 403–408

    Article  CAS  PubMed  Google Scholar 

  • Carpenter MB, Huang Y, Pereira AB, Hersh LB (1990) Immunocytochemical features of the vestibular nuclei in the monkey and cat. J Hirnforsch 31: 585–599

    CAS  PubMed  Google Scholar 

  • Christensen D Isgaard J, Narins PM (1993) Sound and vibration sensitivity of Vlllth nerve fibers in the frogs Leptodactylus albilabris and Rana pipiene pipiens. J Comp Physiol [A] 172: 653–662

    Google Scholar 

  • Cuello AC, Milstein C, Couture R, Wright B, Priestley JY, Jarvis J (1984) Characterization and immunocytochemical application of monoclonal antibodies against enkephalins. J Histochem Cytochem 32: 947–957

    CAS  PubMed  Google Scholar 

  • Dechene CJ, Hampson DR, Goping G, Whecton KD, Wenthold RJ (1991) Identification and localization of a locainate binding protein in the frog inner ear by electron microscopy immunocytochemistry. Brain Res 545: 223–233

    Article  Google Scholar 

  • Dememes D, Ueboa A, Decherne CJ (1995) Cellular and subcellular localization of AWPA-selective glutomate receptors in the mammalian peripherd vestibular system. Brain Res 671: 83–94

    Article  CAS  PubMed  Google Scholar 

  • Dememes D, Wenthold RJ, Moniot B, Sare A (1990) Glutamate-like immunoreactivity in the pericheral vestibular system of mammals. Hear Res 46: 261–269

    Article  CAS  PubMed  Google Scholar 

  • Devou G, Lehouelleur J, Sane A (1993) Glutamate receptors on type I vestibular hair cells of guinea-pig. Eur J Neurosci 5: 1210–1217

    Article  Google Scholar 

  • Didier A, Decory L, Cazals Y (1990) Evidence for potassium-induced motility in type I vestibular hair cells in the guinea pig. Hear Res 46: 171–176

    Article  CAS  PubMed  Google Scholar 

  • Drescher MJ, Drescher DG (1991) Nacetylhistidine, glutamate, and beta-danine are concentrated in a receptor cell layer of the trout inner ear. J Neurochem 56:658–664

    Article  CAS  PubMed  Google Scholar 

  • Engstrom H, Bergstrom B, Ades HW (1972) Macula utriculi and macula sacculi in the squirrel monkey. Acta Otolaryngol Suppl 301: 75–81

    Article  CAS  PubMed  Google Scholar 

  • Engstrom H, Bergstrom B Rosenhall U (1974) Vestibular sensory epithelia. Arch Otolaryngol 100: 411–418

    CAS  PubMed  Google Scholar 

  • Felix D, Ehrenberger K (1982) The action of putative neurotransmitter substances in the cat labyrinth. Acta Otolaryngol 93: 101–105

    Article  CAS  PubMed  Google Scholar 

  • Fernandez C, Goldberg JM, Abend WK (1972) Response to static tilts of peripheral neurons innervating otolith organs of the squirrel monkey. J Neurophysiol 35: 978–987

    CAS  PubMed  Google Scholar 

  • Fernandez C, Goldberg JM, Baird RA (1990) The vestibular nerve of the chinchilla. III. Peripheral innervation patterns in the utricular macula. J Neurophysiol 63: 767–780.

    CAS  PubMed  Google Scholar 

  • Fex J, Altschuler RA (1986) Neurotransmitter-related immunocytochemistry of the organ of Corti. Hear Res 22: 249–263

    Article  CAS  PubMed  Google Scholar 

  • Flock A, Lam DM (1974) Neurotransmitter synthesis in inner ear and lateral line sense organs. Nature 249: 142–144

    Article  CAS  PubMed  Google Scholar 

  • Foster JD, Drescher MJ, Drescher DG (1995) Immunohistochemical localization of GABAA receptors in the mammalian crista ampullaris. Hear Res 83: 203–208

    Article  CAS  PubMed  Google Scholar 

  • Furuya N, Koizumi T (1998) Neurotransmitters of vestibular commissural inhibition in the cat. Acta Otolaryngol 118: 64–69

    Article  CAS  PubMed  Google Scholar 

  • Gacek RR, Lyon M (1974) The localization of vestibular efferent neurons in the kitten with horseradish peroxidase. Acta Otolaryngol 77: 92–101

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JM (2000) Afferent divesity and the organization of central vestibular pathways. Exp Brain Res 130: 277–297

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JM, Lysakowski A, Fernandez C (1990) Morphophysiological and ultrastructural studies in the mammalian cristae ampullares. Hear Res 49: 89–102

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JM, Fernandez C (1980) Efferent vestibular system in the squirrel monkey: anatomical location and influence on afferent activity. J Neurophysiol 43: 986–1025

    CAS  PubMed  Google Scholar 

  • Grassi S, Malfagia C, Pettorossi VE (1998) Effects of metabotropic glutarmate receptor block on the synaptic transmission and plasticity in the rat medial vestibular nuclei. Neuroscience 87: 159–169

    Article  CAS  PubMed  Google Scholar 

  • Guth SL, Norris CH (1984) Pharmacology of the isolated semicircular canal: effect of GABA and picrotoxin. Exp Brain Res 56: 72–78

    Article  CAS  PubMed  Google Scholar 

  • Highstein SM (1991) The central nervous system efferent control of the organs of balance and equilibrium. Neurosci Res 12: 13–30

    Article  CAS  PubMed  Google Scholar 

  • Holt JR, Corey DP, Eatock RA (1997) Mechanoelectrical transduction and adaptation in hair cells of the mouse utricle, a low-frequency vestibular organ. J Neurosci 17: 8739–8748

    CAS  PubMed  Google Scholar 

  • Hughes J (1983) Biogenesis, release and inactivation of enkephalins and dynorphins. Br Med Bull 39: 17–24

    CAS  PubMed  Google Scholar 

  • Ishiyama A, Lopez I, Wackym PA (1994) Choline acetyltransferase immunoreactivity in the human vestibular endorgans. Cell Biol Int 18: 979–984

    Article  CAS  PubMed  Google Scholar 

  • Kawabata A, Sasa M, Ujihara H, Takaori S (1990) Inhibition by enkephalin of medial vestibular nucleus neurons responding to horizontal pendular rotation. Life Sci 47: 1355–1363

    Article  CAS  PubMed  Google Scholar 

  • Klinke R (1981) Neurotransmitters in the cochlea and the cochlear nucleus. Acta Otolaryngol 91: 541–554

    Article  CAS  PubMed  Google Scholar 

  • Klinke R (1986) Neurotransmission in the inner ear. Hear Res 22: 235–243

    Article  CAS  PubMed  Google Scholar 

  • Klinke R, Galley N (1974) Efferent innervation of vestibular and auditory receptors. Physiol Rev 54: 316–357

    CAS  PubMed  Google Scholar 

  • Kong WJ, Hussl B, Thumfart WF, Schrott-Fischer A (1998a) Ultrastructural localization of GABA-like immunoreactivity in the vestibular periphery of the rat. Acta Otolaryngol 118: 90–95

    CAS  PubMed  Google Scholar 

  • Kong WJ, Hussl B, Thumfart WF, Schrott-Fischer A (1998b) Ultrastructural localization of GABA-like immunoreactivity in the human utricular macula. Hear Res 119: 104–112

    Article  CAS  PubMed  Google Scholar 

  • Kong WJ, Scholtz AW, Hussl B, Kammen-Jolly K, Schrott-Fischer A (2002b) Localization of efferent neurotransmitters in the inner ear of the homozygous Bronx waltzer mutant mouse. Hear Res 167: 136–155

    Article  CAS  PubMed  Google Scholar 

  • Kong WJ, Scholtz AW, Kammen-Jolly K, Gluckert R, Hussl B, von Cauvenberg PB (2002a) Ultrastructural evaluation of calcitonin gene-related peptide immunoreactivity in the human cochlea and vestibular endorgans. Eur J Neurosci 15: 487–497

    Article  PubMed  Google Scholar 

  • Lindeman HH (1969) Regional differences in structure of the vestibular sensory regions. J Laryngol Otol 83: 1–17

    Article  CAS  PubMed  Google Scholar 

  • Lopez I, Juiz JM, Altschuler RA, Meza G (1990) Distribution of GABA-like immunoreactivity in guinea pig vestibular cristae ampullaris. Brain Res 530: 170–175

    Article  CAS  PubMed  Google Scholar 

  • Lopez I, Meza G (1988) Neurochemical evidence for afferent GABAergic and efferent cholinergic neurotransmission in the frog vestibule. Neuroscience 25: 13–18

    Article  CAS  PubMed  Google Scholar 

  • Lopez I, Meza G (1990) Comparative studies on glutamate decarboxylase and choline acetyltransferase activities in the vertebrate vestibule. Comp Biochem Physiol B 95: 375–379

    Article  CAS  PubMed  Google Scholar 

  • Matsubara A, Usami S, Fujita S, Shinkawa H (1995) Expression of substance P, CGRP, and GABA in the vestibular periphery, with special reference to species differences. Acta Otolaryngol Suppl 519: 248–252

    Article  CAS  PubMed  Google Scholar 

  • McLamb WT, Park JC (1992) Cholinesterase activity in vestibular organs of young and old mice. Hear Res 58: 193–199

    Article  CAS  PubMed  Google Scholar 

  • Meza G, Carabez A, Ruiz M (1982) GABA synthesis in isolated vestibulary tissue of chick inner ear. Brain Res 241: 157–161

    Article  CAS  PubMed  Google Scholar 

  • Morita I, Komatsuzaki A, Kanda T, Tatsuoka H, Chiba T (1995) Atypical innervation pattern of human vestibular hair cells. Acta Otolaryngol 115: 31–33

    Article  CAS  PubMed  Google Scholar 

  • Niedzielski AS, Wenthold RJ (1995) Expression of AMPA, kainate, and NMDA receptor subunits in cochlear and vestibular ganglia. J Neurosci 15: 2338–2353

    CAS  PubMed  Google Scholar 

  • Ohno K, Takeda N, Kiyama H, Kato H, Fujita S, Matsunaga T, Tohyama M (1993) Synaptic contact between vestibular afferent nerve and cholinergic efferent terminal: its putative mediation by nicotinic receptors. Brain Res Mol Brain Res 18: 343–346

    Article  CAS  PubMed  Google Scholar 

  • Ohno K, Takeda N, Yamano M, Matsunaga T, Tohyama M (1991) Coexistence of acetylcholine and calcitonin gene-related peptide in the vestibular efferent neurons in the rat. Brain Res 566: 103–107

    Article  CAS  PubMed  Google Scholar 

  • Panzanelli P, Valli P, Cantino D, Fasolo A (1994) Glutamate and carnosine in the vestibular system of the frog. Brain Res 662: 293–296

    Article  CAS  PubMed  Google Scholar 

  • Pickles JO, Corey DP (1992) Mechanoelectrical transduction by hair cells. Trends Neurosci 15: 254–259

    Article  CAS  PubMed  Google Scholar 

  • Pompeiano O, Andre P, D’Ascanio P, Manzoni D (1995) Role of the spinocerebellum in adaptive gain control of cat’s vestibulospinal reflex. Acta Otolaryngol Suppl 520 Pt 1: 82–86

    Article  PubMed  Google Scholar 

  • Prigioni I, Russo G, Masetto S (1994) Non-NMDA receptors mediate glutamate-induced depolarization in frog crista ampullaris. Neuroreport 5: 516–518

    Article  CAS  PubMed  Google Scholar 

  • Raymond J, Dememes D, Nieoullon A (1988) Neurotransmitters in vestibular pathways. Prog Brain Res 76: 29–43

    Article  CAS  PubMed  Google Scholar 

  • Ross MD, Chimento T, Doshay D, Cheng R (1992) Computer-assisted three-dimensional reconstruction and simulations of vestibular macular neural connectivities. Ann N Y Acad Sci 656: 75–91

    Article  CAS  PubMed  Google Scholar 

  • Ryan AF, Simmons DM, Watts AG, Swanson LW (1991) Enkephalin mRNA production by cochlear and vestibular efferent neurons in the gerbil brainstem. Exp Brain Res 87: 259–267

    Article  CAS  PubMed  Google Scholar 

  • Scholtz AW, Felder E, Kanonier G, Thurner KG, Schrott-Fischer A (1997) Ultrastructural analyses and reconstruction of human vestibular organs. In: Lurato S and Veldmann JE eds. Progress in human auditory and vestibular histopathology. Amsterdam, New York: Kugler Publications: 91–94

    Google Scholar 

  • Scholtz AW, Kanonier G, Schrott-Fischer A (1997) Distribution of GluR 1–4 in vestibular endorgans. In: Abstracts of the Twentieth Midwinter Research Meeting, Association for Research in Otolaryngology: 41

    Google Scholar 

  • Scholtz AW, Kanonier G, Schrott-Fischer A (1998) Immunohistochemical investigation of enkephalins in the human inner ear. Hear Res 118: 123–128

    Article  CAS  PubMed  Google Scholar 

  • Scholtz AW, Schrott-Fischer A (2001) Neurotransmission in den vestibulären Endorganen. In: Stoll W ed. Vestibuläre Erkrankungen eine interdisziplinäre Herausforderung. Stuttgart, New York: Thieme 30–38

    Google Scholar 

  • Scholtz AW, Thurner KG, Kanonier G, Schrott-Fischer A (1996) Investigations of neurotransmitters in the human vestibular endorgans. Otolaryngol Head Neck Surg 115: P212

    Article  Google Scholar 

  • Schrott-Fischer A, Kammen-Jolly K, Scholtz A, Rask-Andersen H, Glueckert R, Eybalin M (2007) Efferent neurotransmitters in the human cochlea and vestibule. Acta Otolaryngol 127: 13–19

    Article  CAS  PubMed  Google Scholar 

  • Schwarz DW, Satoh K, Schwarz IE, Hu K, Fibiger HC (1986) Cholinergic innervation of the rat’s labyrinth. Exp Brain Res 64: 19–26

    Article  CAS  PubMed  Google Scholar 

  • Smith C, Rasmussen PE (1967) Nerve endings in the maculae and cristae of the chinchilla vestibule, with special reference to the efferents. In: Third Symposium on the Role of the Vestibular Organs in Space Exploratio. NASA SP-152. Washington, DC: NASA SP-152: 183–201

    Google Scholar 

  • Smith PF, Darlington CL (1996) Recent advances in the pharmacology of the vestibulo-ocular reflex system. Trends Pharmacol Sci 17: 421–427

    Article  CAS  PubMed  Google Scholar 

  • Smith PF, Darlington CL (1997) The contribution of N-methyl-D-aspartate receptors to lesion-induced plasticity in the vestibular nucleus. Prog Neurobiol 53: 517–531

    Article  CAS  PubMed  Google Scholar 

  • Spoendlin H (1975) [Relation between structure and function of the vestibular receptor]. Acta Otorhinolaryngol Belg 29: 75–91

    CAS  PubMed  Google Scholar 

  • Sugai T, Yano J, Sugitani M, Ooyama H (1992) Actions of cholinergic agonists and antagonists on the efferent synapse in the frog sacculus. Hear Res 61: 56–64

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Takeda N, Senba E, Tohyama M, Kubo T, Matsunaga T (1989) Localization, origin and fine structure of calcitonin gene-related peptide-containing fibers in the vestibular end-organs of the rat. Brain Res 504: 31–35

    Article  CAS  PubMed  Google Scholar 

  • Usami S, Hozawa J, Tazawa M, Jin H, Matsubara A, Fujita S (1991) Localization of substance P-like immunoreactivity in guinea pig vestibular endorgans and the vestibular ganglion. Brain Res 555: 153–158

    Article  CAS  PubMed  Google Scholar 

  • Usami S, Igarashi M, Thompson GC (1987a) GABA-like immunoreactivity in the squirrel monkey vestibular endorgans. Brain Res 417: 367–370

    Article  CAS  PubMed  Google Scholar 

  • Usami S, Igarashi M, Thompson GC (1987b) GABA-like immunoreactivity in the chick vestibular end organs. Brain Res 418: 383–387

    Article  CAS  PubMed  Google Scholar 

  • Usami S, Matsubara A, Shinkawa H, Matsunaga T, Kanzaki J (1995) Neuroactive substances in the human vestibular end organs. Acta Otolaryngol Suppl 520 Pt 1: 160–163

    Article  PubMed  Google Scholar 

  • Wackym PA (1993) Ultrastructural organization of calcitonin gene-related peptide immunoreactive efferent axons and terminals in the vestibular periphery. Am J Otol 14: 41–50

    CAS  PubMed  Google Scholar 

  • Wackym PA, Micevych PE, Ward PH (1990) Immunoelectron microscopy of the human inner ear. Laryngoscope 100: 447–454

    CAS  PubMed  Google Scholar 

  • Warr WB (1975) Olivocochlear and vestibular efferent neurons of the feline brain stem: their location, morphology and number determined by retrograde axonal transport and acetylcholinesterase histochemistry. J Comp Neurol 161: 159–181

    Article  CAS  PubMed  Google Scholar 

  • Warr WB, Guinan JJ (1979) Efferent innervation of the organ of corti: two separate systems. Brain Res 173: 152–155

    Article  CAS  PubMed  Google Scholar 

  • Wenthold RJ, Altschuler RA, Hampson DR (1990) Immunocytochemistry of neurotransmitter receptors. J Electron Microsc Tech 15: 81–96

    Article  CAS  PubMed  Google Scholar 

  • Wersall J (1956) Studies on the structure and innervation of the sensory epithelium of the cristae ampullaris in the guinea pig. A light and electron microscopic investigation. Acta Otolaryngol Suppl 126: 1–85

    CAS  PubMed  Google Scholar 

  • Yamashita T, Ohnishi S, Ohtani M, Kumazawa T (1993) Effects of efferent neurotransmitters on intracellular Ca2+ concentration in vestibular hair cells of the guinea pig. Acta Otolaryngol Suppl 500: 26–30

    Article  CAS  PubMed  Google Scholar 

  • Yang HY, Panula P, Tang J, Costa E (1983) Characterization and location of Met5-enkephalin-arg6-phe7 stored in various rat brain regions. J Neurochem 40: 969–976

    Article  CAS  PubMed  Google Scholar 

  • Ylikoski J, Pirvola U, Happola O, Panula P, Virtanen I (1989) Immunohistochemical demonstration of neuroactive substances in the inner ear of rat and guinea pig. Acta Otolaryngol 107: 417–423

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this paper

Cite this paper

Scholtz, AW., Glueckert, R., Schrott-Fischer, A. (2008). Wirkung von Transmittern im vestibulären System. In: Scherer, H. (eds) Der Gleichgewichtssinn. Springer, Vienna. https://doi.org/10.1007/978-3-211-75432-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-75432-0_19

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-75431-3

  • Online ISBN: 978-3-211-75432-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics