Skip to main content

Zur Funktionsprüfung der Otolithenorgane

  • Conference paper
Der Gleichgewichtssinn
  • 990 Accesses

Zusammenfassung

Voraussetzung für die Orientierung im Raum ist die Koordination zwischen den Eigenbewegungen eines Individuums und den Bewegungen der unmittelbaren Umwelt. Während das visuelle System Bewegungen der Umwelt weitgehend vermittelt, werden Eigenbewegungen (z. B. gehen, laufen, tanzen) durch die Integration vestibulärer und propriozeptiver Informationen erfasst. Daran beteiligt sind die peripheren Gleichgewichtsorgane, die vestibulären Nuklei im Hirnstamm, der Thalamus, der Hippocampus und schliesslich der vestibuläre Kortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Baloh RW, Beykirch K, Honrubia V, Yee RD (1988) Eye Movements Induced by Linear Acceleration on a Parallel Swing. J Neurophysiol 60: 2000–2013

    CAS  PubMed  Google Scholar 

  • Bárány R (1907) Physiologie und Pathologie des Bogengangsapparates beim Menschen. Deuticke, Wien

    Google Scholar 

  • Basta D, Todt I, Eisenschenk A, Ernst A (2005) Vestibular evoked myogenic potentials induced by electrical stimulation of the human inferior vestibular nerve. Hear Res 204: 111–114

    Article  CAS  PubMed  Google Scholar 

  • Bickford RG, Jacobson JL, Cody DTR. (1964) Nature of averaged evoked potentials to sound and other stimuli in man. Ann N Y Acad Sci 112: 204–223

    Article  CAS  PubMed  Google Scholar 

  • Böhmer A, Rickenmann J. (1995) The subjective visual vertical as a clinical parameter of vestibular function in peripheral vestibular disease. J Vest Res, 5: 35–45

    Article  Google Scholar 

  • Bos JE, Bles W (1998) Modelling motion sickness and subjective vertical mismatch detailed for vertical motions. Brain Res Bull 47(5):537–542

    Article  CAS  PubMed  Google Scholar 

  • Clarke AH, Teiwes W, Scherer H (1991) Videooculography — an alternative method for measurement of three-dimensional eye movements. In: Schmidt R, Zambarbieri D (Eds) Oculomotor Control and Cognitive Processes. Elsevier, Amsterdam, p 431–443

    Google Scholar 

  • Clarke AH, Engelhorn A, Scherer H (1996) Ocular counterrolling in response to asymmetric radial acceleration. Acta Otolaryngol. (Stockh) 116: 652–656

    Article  CAS  Google Scholar 

  • Clarke AH, Engelhorn A (1998) Unilateral testing of utricular function. Exp Brain Res 121: 457–464

    Article  CAS  PubMed  Google Scholar 

  • Clarke AH, Schönfeld U, Hamann C, Scherer H (2001) Measuring unilateral otolith function via the otolith-ocular response and the subjective visual vertical. Acta Otolaryngol. (Stockh) Suppl 545: 84–87

    Article  CAS  Google Scholar 

  • Clarke AH, Ditterich J, Druen K, Schonfeld U, Steineke C (2002) Using high frame rate CMOS sensors for three-dimensional eye tracking. Behav Res Methods Instrum Comput 34: 549–60

    CAS  PubMed  Google Scholar 

  • Clarke AH, Schönfeld U, Helling K (2003) Unilateral examination of utricle and saccule function. J Vest Res 13: 215–225

    CAS  Google Scholar 

  • Cohen B, Dai M, Raphan T (2003) The critical role of velocity storage in production of motion sickness. Ann N Y Acad Sci 1004: 359–76

    Article  PubMed  Google Scholar 

  • Colebatch JG, Halmagyi GM, Skuse NF (1994) Myogenic potentials generated by a click-evoked vestibulocollic reflex. J. Neurol. Neurosurg. Psychiatry 57: 190–197

    Article  CAS  PubMed  Google Scholar 

  • Colebatch JG (2001) Vestibular evoked potential. Curr. Opin. Neurol 14: 21–26

    Article  CAS  PubMed  Google Scholar 

  • Collewijn H, van der Steen J, Ferman L, Jansen TC (1985) Human ocular counterroll: assessment of static and dynamic properties from scleral coil recordings. Exp Brain Res 59: 185–196

    Article  CAS  PubMed  Google Scholar 

  • Corvera J, Hallpike CS, Schuster EHJ (1965) A new method for the anatomical reconstruction of the human macular planes. Acta Otolaryngol (Stockh) 49: 4–16

    Article  Google Scholar 

  • Crane BT, Tian J, Wiest G, Demer JL (2003) Initiation of the human heave linear vestibulo-ocular reflex. Exp Brain Res 148: 247–255

    PubMed  Google Scholar 

  • Curthoys IM, Dai MJ, Halmagyi GM (1991) Human ocular torsional position before and after unilateral vestibular neurectomy. Exp Brain Res 85: 218–225

    Article  CAS  PubMed  Google Scholar 

  • Dai MJ, Curthoys IS, Halmagyi GM (1989) Linear acceleration perception in the roll plane before and after unilateral vestibular neurectomy. Exp Brain Res 77: 315–328

    Article  CAS  PubMed  Google Scholar 

  • Dai M, Kunin, M, Raphan T, Cohen B (2003) The relation of motion sickness to the spatial-temporal properties of velocity storage. Exp Brain Res 151: 173–189

    Article  PubMed  Google Scholar 

  • de Graaf B, de Roo AJ (1996) Effects of long duration centrifugation on head movements and a psychomotor task. J Vestib Res 6: 23–29

    Article  PubMed  Google Scholar 

  • de Waele C (2001) VEMP Induced by High level Clicks. A New Test of Saccular Otolith Function. Adv Otorhinolaryngol 58: 98–109

    PubMed  Google Scholar 

  • Diamond SG, Markham CH (1983) Ocular counterrolling as an indicator of otlith function. Neurology 33: 1460–1469

    CAS  PubMed  Google Scholar 

  • Ferber-Viart C, Duclaux R, Colleaux B, Dubreuil C (1997) Myogenic vestibular-evoked potentials in normal subjects: A comparison between responses obtained from sternocleidomastoid and trapezius muscles. Acta Otolaryngol (Stockh) 117: 472–481

    Article  CAS  Google Scholar 

  • Fischer MHZ (1927) Messende Untersuchungen über die Gegenrollung der Augen und die Lokalisation der scheinbaren Vertikalen. v Graefe’s Arch Ophthal 118: 633–680

    Article  Google Scholar 

  • Furman J, Baloh RW (1992) Otolith-ocular testing in human subjects, Ann N Y Acad Sci 655: 431–451

    Article  Google Scholar 

  • Furman JM, Schor RH, Kamerer DB (1993) Off-vertical axis rotational responses in patients with unilateral peripheral vestibular lesions. Ann Otol Rhinol Laryngol 102: 137–143

    CAS  PubMed  Google Scholar 

  • Glasauer S, Merfeld DM (1997) Modelling three dimensional vestibular responses during complex motion stimulation. In: Fetter M, Misslich H, Haslwanter T (Eds) Three-Dimensional Kinematic Principles of Eye-, Head-, and Limb Movements in Health and Disease.

    Google Scholar 

  • Gresty M, Lempert T (2001) Pathophysiology and clinical testing of otolith dysfunction. In: Tran Ba Huy P, Toupet M (eds) Otolith functions and disorders. Adv. Otorhinolaryngol 58: 15–33

    Google Scholar 

  • Halmagyi GM, Curthoys IS (1988) A clinical sign of canal paresis. Arch Neurol 45: 737–739

    CAS  PubMed  Google Scholar 

  • Halmagyi GM, Curthoys IS (1999) Clinical Testing of Otolith Function. Ann N Y Acad Sci 871: 195–204

    Article  CAS  PubMed  Google Scholar 

  • Hamann KF, Haarfeldt R (2006) Vestibulär evozierte myogene Potentiale. HNO 54: 415–428

    Article  PubMed  Google Scholar 

  • Heide G, Freitag S, Wollenberg I, Iro H, Schimrigk K, Dillmann U (1999) Click evoked myogenic potentials in the differential diagnosis of acute vertigo. J Neurol Neurosurg Psychiatry 66: 787–790

    Article  CAS  PubMed  Google Scholar 

  • Helling K, Hausmann S, Clarke A, Scherer H (2003) Experimentally induced motion sickness in fish: possible role of the otolith organs. Acta Otolaryngol 123: 488–492

    Article  PubMed  Google Scholar 

  • Helling K, Schonfeld U, Scherer H, Clarke AH (2006a) Testing utricular function by means of onaxis rotation. Acta Otolaryngol 126: 587–593

    Article  CAS  PubMed  Google Scholar 

  • Helling K, Schonfeld U, Halbach A, Clarke AH (2006b) Treatment of Menièrés disease by low-dosage intratympanic gentamicin application — effect on otolith function (zur Publikation eingereicht) Igarashi M (1974) Dimensional Study of the Vestibular End Organ Apparatus. Laryngoscope 77: 1806–1817

    Google Scholar 

  • Jombík P, Bahyl V 2005 Short latency disconjugate vestibulo-ocular responses to transient stimuli in the audio frequency range J Neurol Neurosurg Psychiatry 76: 1398–1402

    Article  PubMed  Google Scholar 

  • Jongkees LBW, Philipszoon AJ (1962) Nystagmus provoked by linear acceleration. Acta Physiol Phararmacol Neerl 10: 239–247

    CAS  Google Scholar 

  • Kachar B, Parakkal M, Fex J (1990) Structural basis for mechanical transduction in the frog vestibular sensory apparatus: I. The otolithic membrane. Hearing Res 45: 179–190

    Article  CAS  Google Scholar 

  • Kirienko NM, Money KE, Landolt JP, Graybiel A, Johnson WH (1984) Clinical testing of the otoliths: a critical assessment of ocular counterrolling. J Otolaryngol 13:281–288

    CAS  PubMed  Google Scholar 

  • Lempert T, Gresty MA, Bronstein AM (1999) Horizontal linear vestibulo-ocular reflex testing in patients with peripheral vestibular disorders. Ann NY Acad Sci 871: 232–247

    Article  CAS  PubMed  Google Scholar 

  • Merfeld DM, Teiwes W, Clarke AH, Scherer H, Young LR (1996) The dynamic contributions of the otolith organs to human ocular torsion. Exp. Brain Res 110: 315–321

    Article  CAS  PubMed  Google Scholar 

  • Murofushi T, Curthoys IS, Topple AN, Colebatch JG, and Halmagyi GM (1995) Responses of guinea pig primary vestibular neurons to clicks. Exp Brain Res 103: 174–178

    Article  CAS  PubMed  Google Scholar 

  • Niven JI, Hixson WC, Correla MJ (1965) Elicitation of Horizontal Nystagmus by Periodic Linear Acceleration. Acta Otolaryngol (Stockh) 62: 429–440.

    Article  Google Scholar 

  • Paige GD (1989) The influence of target distance on eye movement responses during vertical linear motion. Exp Bain Res 77: 585–593

    CAS  Google Scholar 

  • Paige GD, Tomko DL (1991) Eye movement responses to linear head motion in the squirrel monkey. I. Basic Characteristics J Neurophysiol 65: 1170–1182

    CAS  Google Scholar 

  • Paige GD (2002) Otolith function: basis for modern testing. Ann NY Acad Sci 956: 314–323

    Article  PubMed  Google Scholar 

  • Ramat S, Zee DS (2002) Translational VOR Responses to Abrupt Interaural Accelerations in Normal Humans. Ann NY Acad Sci 956: 551–554

    Article  CAS  PubMed  Google Scholar 

  • Rosengren SM, McAngus Todd NP, Colebatch JG (2005) Vestibular-evoked extraocular potentials produced by stimulation with bone-conducted sound. Clin Neurophysiol 116(8):1938–48

    Article  CAS  PubMed  Google Scholar 

  • Rosenhall U (1972) Vestibular macular mapping in man. Ann Oto Rhinol Laryngol 81: 339–351

    CAS  Google Scholar 

  • Ross MD (2001) Complex vestibular macular anatomical relationships need a synthetic approach. Acta Otolaryngol. Suppl. 545: 25–28

    Article  CAS  PubMed  Google Scholar 

  • Schwarz C, Busettine C, Miles FA (1989) Ocular responses to linear motion are inversely proportional to viewing distance. Science 245: 1394–1396

    Article  CAS  PubMed  Google Scholar 

  • Schwarz C, Miles FA (1991) Ocular responses to translation and their dependence on viewing distance. I. Motion of the observer. J Neurophysiol 66: 851–864

    CAS  PubMed  Google Scholar 

  • Shotwell SL Jacobs R Hudspeth AJ (1981) Directional sensitivity of individual vertebrate hair cells to controlled deflection of their hair bundles. Ann NY Acad Sci 374: 1–10

    Article  CAS  PubMed  Google Scholar 

  • Takumida M, Wersäll J, Bagger-Sjöbäck D (1988) Stereocilia glycocalix and interconnections in the guinea pig vestibular organs. Acta Otolaryngol (Stockh) 106: 130–139

    Article  CAS  Google Scholar 

  • Tian JR, Crane BT, Wiest G, Demer JL (2002) Effect of aging on the human initial interaural linear vestibulo-ocular reflex. Exp Brain Res 145: 142–149

    Article  PubMed  Google Scholar 

  • Timmer FC, Zhou G, Guinan JJ, Kujawa SG, Hermann BS, Rauch SD (2006) Vestibular evoked myogenic potential (VEMP) in patients with Meniere’s disease with drop attacks. Laryngoscope 116: 776–779

    Article  PubMed  Google Scholar 

  • Todd NP, Cody FW (2000) Vestibular responses to loud dance music: a physiological basis of the „rock and roll threshold“? J Acoust Soc Am 107: 496–500

    Article  CAS  PubMed  Google Scholar 

  • Townsend GL, Cody DT (1971) The averaged inion response evoked by acoustic stimulation: its relation to the saccule. Ann Otol Rhinol Laryngol 80: 121–31

    CAS  PubMed  Google Scholar 

  • Uchino Y, Sasaki M, Sato H, Imagawa M, Suwa H, Isu N (1996) Utriculoocular Reflex Arc of the Cat. J Neurophysiol 76: 1896–1903

    CAS  PubMed  Google Scholar 

  • von Brevern M, Schmidt T, Schonfeld U, Lempert T, Clarke AH 2006 Utricular dysfunction in patients with benign paroxysmal positional vertigo. Otol Neurotol 27: 92–96

    Article  Google Scholar 

  • Watanuki K, Schuknecht HF (1976) A morphological study of human vestibular sensory epithelia. Arch ORL 102: 583–588

    Google Scholar 

  • Welgampola MS, Colebatch JG (2005) Characteristics and clinical applications of vestibular-evoked myogenic potentials. Neurology 64: 1682–1688

    Article  PubMed  Google Scholar 

  • Westhofen M (1991) Die klinische Diagnostik der Otolithenfunktion. Otorhinolaryngol Nova. 1: 26–36

    Google Scholar 

  • Wetzig J, Hofstetter-Degen, K, Maurer J, von Baumgarten R (1992) Clinical verification of a unilateral otolith test. Acta Astronautica 27: 19–24

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Mustain W, Simpson I (2004) Sound-evoked vestibulo-ocular reflexes (VOR) in trained monkeys. Exp Brain Res 156(2): 129–34

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this paper

Cite this paper

Clarke, A.H. (2008). Zur Funktionsprüfung der Otolithenorgane. In: Scherer, H. (eds) Der Gleichgewichtssinn. Springer, Vienna. https://doi.org/10.1007/978-3-211-75432-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-75432-0_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-75431-3

  • Online ISBN: 978-3-211-75432-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics