Skip to main content

Computational analysis of metabolic networks

  • Chapter
Modern Genome Annotation

Abstract

The metabolism of a species results from the joint operation of a large network of biochemical reactions, almost all of which are catalyzed by enzymes encoded in the genome of that species. Metabolic databases such as KEGG (Ogata et al. 1998; Kanehisa et al. 2006) or MetaCyc (Karp et al. 1996; Caspi et al. 2007) contain information about thousands of such reactions together with the compounds they involve. For instance, the KEGG database (as of January 2007) contains 6,580 reactions, and 5355 compounds, linked together by 13,490 substrate-to-reaction and 13,956 reaction-to-product relationships. In total, the KEGG database thus contains 18,515 entities (the metabolites and reactions), and 27,446 links (the substrate-to-reation and reaction-to-product-relationships). Furthermore, genes whose products are known to encode enzymes are linked to the corresponding reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arita M (2004) The metabolic world of Escherichia coli is not small. Proc Natl Acad Sci USA 101(6): 1543–1547

    Article  PubMed  CAS  Google Scholar 

  • Arita M (2005) Scale-freeness and biological networks. J Biochem 138(1): 1–4

    Article  PubMed  CAS  Google Scholar 

  • Bara T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko K, Tomita M, Wanner B, Mori H (2006) Construction of Escherichia coli k12 in-frame, singlegene knockout mutants: the keio collection. Mol Syst Biol 1: 2:2006.0008

    Google Scholar 

  • Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the cobra toolbox. Nat Protocols 2: 727–738

    Article  CAS  Google Scholar 

  • de Berardinis V, Vallenet D, Castelli V, Besnard M, Pinet A, Cruaud C, Samair S, Lechaplais C, Gyapay G, Richez C, Durot M, Kreimeyer A, Le Fevré F, Schächter V, Pezo V, Doring V, Scarpelli C, Medigué C, Cohen GN, Marlieré P, Salanoubat M, Weissenbach J (2008) A complete collection of single-gene deletion mutants of acinetobacter baylyi adp1. Mol Syst Biol (in press)

    Google Scholar 

  • Brohée S, Faust K, Vanderstocken G, van Helden J (2008) Network analysis tools: from biological networks to clusters and pathways (submitted)

    Google Scholar 

  • Brohée S, Faust K, Lima-Mendez G, Sand O, Janky R, Vanderstocken G, Deville Y, van Helden J (2008) NeAT: a toolbox for the analysis of biological networks, clusters, classes and pathways. Nucleic Acids Res

    Google Scholar 

  • Burgard AP, Nikolaev EV, Schilling CH, Maranas CD (2004) Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res 14: 301–312

    Article  PubMed  CAS  Google Scholar 

  • Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Latendresse M, Paley S, Rhee SY, Shearer AG, Tissier C, Walk TC, Zhang P, Karp PD (2007) The metacyc database of metabolic pathways and enzymes and the biocyc collection of pathway/genome databases. Nucleic Acids Res 36 (Database issue): D623–D631

    Article  PubMed  CAS  Google Scholar 

  • Combe C, Le Fevré F, Smidtas S, Schächter V (in preparation) Nemostudio: a software platform for constraints-based modelling of metabolism

    Google Scholar 

  • Covert MW, Palsson BO (2002) Transcriptional regulation in constraints-based models of Escherichia coli. J Bio Chem 277(31): 28,058–28,064

    Article  CAS  Google Scholar 

  • Croes D, Couche F, Wodak SJ, van Helden J (2005) Metabolic pathfinding: inferring relevant pathways in biochemical networks. Nucleic Acids Res 33(Web Server issue): W326–W330

    Article  PubMed  CAS  Google Scholar 

  • Croes D, Couche F, Wodak SJ, van Helden J (2006) Inferring meaningful pathways in weighted metabolic networks. J Mol Biol 356(1): 222–236

    Article  PubMed  CAS  Google Scholar 

  • Durot M, Le Fevré F, De Berardinis V, Kreimeyer A, Weissenbach J, Schächter V (2007) Reconstruction of a global model of acinetobacter baylyi metabolism using genome-wide conditional essentiality data on several media. In: 2nd ASM Conference on Integrating Metabolism and Genomics, Am Soc Microbiol

    Google Scholar 

  • Edwards JS, Ibarra RU, Palsson BO (2001) In silico predictions of escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19: 125–130

    Article  PubMed  CAS  Google Scholar 

  • Fell DA, Wagner A (2000) The small world of metabolism. Nat Biotechnol 18(11): 1121–1122

    Article  PubMed  CAS  Google Scholar 

  • Green ML, Karp PD (2004) A bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinformatics 5: 76

    Article  PubMed  Google Scholar 

  • van Helden J, Wernisch L, Gilbert D, Wodak SJ (2002) Graph-based analysis of metabolic networks. In: al MHWe (ed) Ernst Schering Res Found Workshop, Springer-Verlag, pp 245–274

    Google Scholar 

  • Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Novere NL, Loew LM, Lucio D, Mendes P, Minch E, Mjolness ED, Nakayama Y, adn P F Nielse MRN, Sakurada T, Schaff JC, Shapiro BE, Shimizu T, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4): 524–531

    Article  PubMed  CAS  Google Scholar 

  • Jamshidi N, Edwards JS, Fahland T, Church GM, Palsson BO (2001) Dynamic simulation of the human red blood cell metabolic network. Bioinformatics 213(1): 286–287

    Article  Google Scholar 

  • Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL (2000) The large-scale organization of metabolic networks. Nature 407(6804): 651–654

    Article  PubMed  CAS  Google Scholar 

  • Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411(6833): 41–42

    Article  PubMed  CAS  Google Scholar 

  • Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, de Bono B, Jassal B, Gopinath GR, Wu GR, Matthews L, Lewis S, Birney E, Stein L (2005) Reactome: a knowledgebase of biological pathways. Nucleic Acids Res 33(Database Issue): D428–D432

    Article  PubMed  CAS  Google Scholar 

  • Joyce AR, Reed JL, White A, Edwards R, Osterman A, Baba T, Mori H, Lesely SA, Palsson BO, Agarwalla S (2006) Experimental and computational assessment of conditionally essential genes in Escherichia coli. J Bacteriol 188(23): 8259–8271

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M (1996) Toward pathway engineering: a new database of genetic and molecular pathways. Sci Technol Japan 59: 34–38

    Google Scholar 

  • Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in kegg. Nucleic Acids Res 34(Database issue): D354–D357

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirawaka M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) Kegg for linking genomes to life and environment. Nucleic Acids Res 36(Database issue): D480–D484

    Article  PubMed  CAS  Google Scholar 

  • Karp P, Riley M, Saier M, Paulsen I, Paley S, Pellegrini-Toole A (2002) The ecocyc database. Nucleic Acids Res 30(1): 56–58

    Article  PubMed  CAS  Google Scholar 

  • Karp P, Ouzounis C, Moore-Kochlacs C, Goldovsky L, Kaipa P, Ahren D, Tsoka S, Darzentas N, Kunin V, Lopez-Bigas N (2005) Expansion of the biocyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res 33(19): 6083–6089

    Article  PubMed  CAS  Google Scholar 

  • Karp PD, Riley M, Paley SM, Pelligrini-Toole A (1996) Ecocyc: an encyclopedia of escherichia coli genes and metabolism. Nucleic Acids Res 24(1): 32–39

    Article  PubMed  CAS  Google Scholar 

  • Khanin R, Wit E (2006) How scale-free are biological networks. J Comput Biol 13(3): 810–818

    Article  PubMed  CAS  Google Scholar 

  • Kharchenko P, Vitkup D, Church GM (2004) Filling gaps in a metabolic network using expression information. Bioinformatics 20(Suppl 1): i178–i185

    Article  PubMed  CAS  Google Scholar 

  • Klamt S, Saez-Rodriguez J, Ginkel M, Gilles E (2003) Fluxanalyzer: exploring structure, pathways and flux distributions in metabolic networks on interactive flux maps. Bioinformatics 19(2): 261–269

    Article  PubMed  CAS  Google Scholar 

  • Klamt S, Saez-Rodriguez J, Gilles E (2007) Structural and functional analysis of cellular networks with cellnetanalyzer. BMC Syst Biol 1: 2

    Article  PubMed  Google Scholar 

  • Krummenacker M, Paley S, Yan T, Karp PD (2005) Querying and computing with biocyc databases. Bioinformatics 21(16): 3454–3455

    Article  PubMed  CAS  Google Scholar 

  • Kummel A, Panke S, Heinemann M (2006) Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome. Mol Syst Biol 2:2006.0034

    Article  PubMed  CAS  Google Scholar 

  • Le Fevré F, Smidtas S, Schächter V (2007) Cyclone: Java-based querying and computing with pathway genome databases. Bioinformatics 23(10): 1299–1300

    Article  PubMed  CAS  Google Scholar 

  • Luciano JS, Stevens RD (2007) e-Science and biological pathway semantics. BMC Bioinformatics 8(S3)

    Google Scholar 

  • Ogata H, Goto S, Fujibuchi W, Kanehisa M (1998) Computation with the kegg pathway database. Biosystems 47(1–2): 119–128

    Article  PubMed  CAS  Google Scholar 

  • Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de Crecý-Lagard V, Diaz N, Disz T, Edwards R, Fonstein M, Frank ED, Gerdes S, Glass EM, Goesmann A, Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B, McHardy AC, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V, Pusch GD, Rodionov DA, Ruckert C, Steiner J, Stevens R, Thiele I, Vassieva O, Ye Y, Zagnitko O, Vonstein V (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acides Res 33(17): 5691–5702

    Article  CAS  Google Scholar 

  • Paley S, Karp PD (2002) Evaluation of computational metabolic-pathway predictions for h. pylori. Bioinformatics 18: 715–724

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer T, Sanchez-Valdenebro I, Nuno JC, Montera F, Schuster S (1999) Metatool: for studying metabolic networks. Bioinformatics 15(3): 251–257

    Article  PubMed  CAS  Google Scholar 

  • Poolman MG (2006) Metabolic modelling with python. IEEE Proc Syst Biol 153: 375–378

    Article  CAS  Google Scholar 

  • Potapov AP, Voss N, Sasse N, Wingender E (2005) Topology of mammalian transcription networks. Genome Inform 16(2): 270–278

    PubMed  CAS  Google Scholar 

  • Ravasz E, Barabasi AL (2003) Hierarchical organization in complex networks. Phys Rev E Stat Nonlin Soft Matter Phys 67(2 Pt 2): 026,112

    PubMed  Google Scholar 

  • Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297(5586):1551–1555

    Article  PubMed  CAS  Google Scholar 

  • Ren Q, Kang KH, Paulsen IT (2004) Transportdb: a relational database of cellular membrane transport systems. Nucleic Acids Res 1(32(Database issue)): D274–D279

    Google Scholar 

  • Salgado H, Gama-Castro S, Peralta-Gil M, Diaz-Peredo E, Sanchez-Solano F, Santos-Zavaleta A, Martinez-Flores I, Jimenez-Jacinto V, Bonavides-Martinez C, Segura-Salazar J, Martinez-Antonio A, Collado-Vides J (2006) Regulondb (version 5.0): Escherichia coli k-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Res 34(Database issue): D394–D397

    Article  PubMed  CAS  Google Scholar 

  • Schächter V, Durot M (in preparation) Systematic refinement of genome-scale metabolic models using gene essentiality data

    Google Scholar 

  • Schilling CH, Palsson BO (2000) Assessment of the metabolic capabilities of haemophilus influenza rd through a genome-scale pathway analysis. J Theor Biol 203(3): 249–283

    Article  PubMed  CAS  Google Scholar 

  • Schilling CH, Edwards JS, Letscher D, Palsson B (2001) Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. Biotechnol Bioeng 71(4): 286–306

    Article  CAS  Google Scholar 

  • Schuster S, Dandekar T, Fell DA (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 17(2): 53–60

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Qian H, Beard DA (2005) Ab initio prediction of thermodynamically feasible reaction directions from biochemical network stoichiometry. Metab Eng 7: 251–259

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Schächter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this chapter

Cite this chapter

Bourguignon, PY., van Helden, J., Ouzounis, C., Schächter, V. (2008). Computational analysis of metabolic networks. In: Frishman, D., Valencia, A. (eds) Modern Genome Annotation. Springer, Vienna. https://doi.org/10.1007/978-3-211-75123-7_16

Download citation

Publish with us

Policies and ethics