Skip to main content

Music and the self

  • Chapter
Music that works

Abstract

As we pass through life we interact with and experience music in many ways. Sometimes we pay attention to it; other times we do not. Often we move along with music, not only as performers but also as engaged listeners who tap their feet, bob their heads, or simply follow the music with their minds. Perhaps for most, music intertwines itself with our life narratives. Hearing songs from our past often evokes vivid memories and strong emotions (Sloboda and O’Neill 2001, Juslin and Laukka 2004, Janata et al. 2007). Given the many ways in which we experience music, and the central role it plays in cultures around the world, one is drawn to the questions of why music engages the human brain so strongly and how it is that the brain enables these various forms of musical experience? Part of answering these questions depends on understanding what constellations of brain areas might allow music to interact so profoundly with the self. In other words, what are the brain areas that allow music to move us or to evoke such strong memories?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blood AJ, Zatorre RJ, Bermudez P, Evans AC (1999) Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat Neurosci 2(4), 382–387

    Article  PubMed  Google Scholar 

  • Blood AJ, Zatorre RJ (2001) Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. PNAS 98(20), 11818–11823

    Article  PubMed  Google Scholar 

  • Brown S, Martinez MJ, Parsons LM (2004) Passive music listening spontaneously engages limbic and paralimbic systems. Neuroreport 15(13), 2033–2037

    Article  PubMed  Google Scholar 

  • Burgess PW, Simons JS, Dumontheil I, Gilbert SJ (2005) The gateway hypothesis of rostral prefrontal cortex (area 10) function. In: Duncan J, McLeod P, Phillips L (eds.) Measuring the Mind: Speed, Control and Age, pp. 251–246. Oxford, Oxford University Press

    Google Scholar 

  • Cabeza R, Nyberg L (2000) Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci 12(1), 1–47

    Article  PubMed  Google Scholar 

  • Chen JL, Zatorre RJ, Penhune VB (2006) Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. NeuroImage 32(4), 1771–1781

    Article  PubMed  Google Scholar 

  • Cuddy LL, Duffin J (2005) Music, memory, and Alzheimer’s disease: is music recognition spared in dementia, and how can it be assessed? Med Hypotheses 64(2), 229–235

    Article  PubMed  Google Scholar 

  • Fiebach CJ, Schubotz RI (2006) Dynamic anticipatory processing of hierarchical sequential events: a common role for Broca’s area and ventral premotor cortex across domains? Cortex 42(4), 499–502

    Article  PubMed  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsical ly organized into dynamic, anticorrelated functional networks. Proc Acad Sci USA 102(27), 9673–9678

    Article  Google Scholar 

  • Fuster JM (2000) Executive frontal functions. Exp Brain Res 133(1), 66–70

    Article  PubMed  Google Scholar 

  • Fuster JM (2004) Upper processing stages of the perception-action cycle. Trends Cogn Sci 8(4), 143–145

    Article  PubMed  Google Scholar 

  • Gaab N, Gaser C, Zaehle T, Jancke L, Schlaug G (2003) Functional anatomy of pitch memory — an fMRI study with sparse temporal sampling. Neuroimage 19(4), 1417–1426

    Article  PubMed  Google Scholar 

  • Gilbert SJ, Spengler S, Simon JS, Steele JD, Lawrie SM, Frith CD, et al. (2006) Functional specialization within rostral prefrontal cortex (Area 10): a meta-analysis. J Cogn Neurosci 18(6), 932–948

    Article  PubMed  Google Scholar 

  • Gilboa A (2004) Autobiographical and episodic memory — one and the same? Evidence from prefrontal activation in neuroimaging studies. Neuropsychologia 42(10), 1336–1349

    Article  PubMed  Google Scholar 

  • Grahn JA, Brett M (2007) Rhythm and beat perception in motor areas of the brain. J Cogn Neurosci 19(5), 893–906

    Article  PubMed  Google Scholar 

  • Halpern AR, Zatorre RJ (1999) When that tune runs through your head: a PET investigation of auditory imagery for familiar melodies. Cerebral Cortex 9(7), 697–704

    Article  PubMed  Google Scholar 

  • Janata P (2005) Brain networks that track musical structure. Ann NY Acad Sci 1060(1), 111–124

    Article  PubMed  Google Scholar 

  • Janata P (2007-2008) Navigating tonal space. In: Hewlett WB, Selfridge-Field E, Correia E (eds.) Tonal Theory for the Digital Age. Computing in Musicology, pp. 39–50. Stanford, Center for Computer Assisted Research in the Humanities

    Google Scholar 

  • Janata P (submitted) The neural architecture of music-evoked autobiographical memories

    Google Scholar 

  • Janata P, Grafton ST (2003) Swinging in the brain: shared neural substrates for behaviors related to sequencing and music. Nat Neurosci 6(7), 682–687

    Article  PubMed  Google Scholar 

  • Janata P, Tomic ST, Rakowski SK (2007) Characterisation of music-evoked autobiographical memories. Memory 15(8), 845–860

    Article  PubMed  Google Scholar 

  • Janata P, Tillmann B, Bharucha JJ (2002a) Listening to polyphonic music recruits domain-general attention and working memory circuits. Cogn Affect Behav Neurosci 2(2), 121–140

    Article  PubMed  Google Scholar 

  • Janata P, Birk JL, Van Horn JD, Leman M, Tillmann B, Bharucha JJ (2002b) The cortical topography of tonal structures underlying Western music. Science 298(5601), 2167–2170

    Article  PubMed  Google Scholar 

  • Juslin PN, Laukka P (2004) Expression, perception, and induction of musical emotions: a review and a questionnaire study of everyday listening. J New Music Res 33(3), 217–238

    Article  Google Scholar 

  • Koechlin E, Ody C, Kouneiher F (2003) The architecture of cognitive control in the human prefrontal cortex. Science 302, 1181–1185

    Article  PubMed  Google Scholar 

  • Koelsch S (2005) Neural substrates of processing syntax and semantics in music. Curr Opin Neurobiol 15(2), 207–212

    Article  PubMed  Google Scholar 

  • Koelsch S, Gunter TC, v Cramon DY, Zysset S, Lohmann G, Friederici AD (2002) Bach speaks: a cortical “language-network” serves the processing of music. Neuroimage 17(2), 956–966

    Article  PubMed  Google Scholar 

  • Langheim FJP, Callicott JH, Mattay VS, Duyn JH, Weinberger DR (2002) Cortical systems associated with covert music rehearsal. Neuroimage 16(4), 901–908

    Article  PubMed  Google Scholar 

  • Lieberman MD (2007) Social cognitive neuroscience: a review of core processes. Ann Rev Psychol 58, 259–289

    Article  Google Scholar 

  • Maguire EA (2001) Neuroimaging studies of autobiographical event memory. Philos Trans R Soc Lond B-Biol Sci 356(1413), 1441–1451

    Article  PubMed  Google Scholar 

  • Meister G, Krings T, Foltys H, Boroojerdi B, Muller M, Topper R, et al. (2004) Playing piano in the mind — an fMRI study on music imagery and performance in pianists. Cogn Brain Res 19(3), 219–228

    Article  Google Scholar 

  • Northoff G, Bermpohl F (2004) Cortical midline structures and the self. Trends Cogn Sci 8(3), 102–107

    Article  PubMed  Google Scholar 

  • Northoff G, Heinzel A, Greek M, Bennpohl F, Dobrowolny H, Panksepp J (2006) Self-referential processing in our brain — a meta-analysis of imaging studies on the self. Neuroimage 31(1), 440–457

    Article  PubMed  Google Scholar 

  • Panksepp J, Bernatzky G (2002) Emotional sounds and the brain: the neuro-affective foundations of musical appreciation. Behavioural Processes 60(2), 133–155

    Article  PubMed  Google Scholar 

  • Parsons LM, Sergent J, Hodges DA, Fox PT (2005) The brain basis of piano performance. Neuropsychologia 43(2), 199–215

    Article  PubMed  Google Scholar 

  • Patel AD (2003) Language, music, syntax and the brain. Nat Neurosci 6(7), 674–681

    Article  PubMed  Google Scholar 

  • Penhune VB, Zattore RJ, Evans AC (1998) Cerebellar contributions to motor timing: a PET study of auditory and visual rhythm reproduction. J Cogn Neurosci 10(6), 752–765

    Article  PubMed  Google Scholar 

  • Peretz I, Coltheart M (2003) Modularity of music processing. Nat Neurosci 6(7), 688–691

    Article  PubMed  Google Scholar 

  • Peretz I, Zatorre RJ (2005) Brain organization for music processing. Annu Rev Psychol 56, 89–114

    Article  PubMed  Google Scholar 

  • Plailly J, Tillmann B, Royet J-P (2007) The Feeling of Familiarity of Music and Odors: The Same Neural Signature? Cereb Cortex 17(11), 2650–2658

    Article  PubMed  Google Scholar 

  • Platel H, Baron JC, Desgranges B, Bernard F, Eustache F (2003) Semantic and episodic memory of music are subserved by distinct neural networks. Neuroimage 20(1), 244–256

    Article  PubMed  Google Scholar 

  • Preston SD, de Wall FBM (2002) Empathy: its ultimate and proximate bases. Behav Brain Sci 25(1), 1–20

    PubMed  Google Scholar 

  • Raichle ME, Gusnard DA (2005) Intrinsic brain activity sets the stage for expression of motivated behavior. J Comp Neurol 493(1), 167–176

    Article  PubMed  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Acad Sci USA 98(2), 676–682

    Article  Google Scholar 

  • Ridderinkhof KR, van den Wildenberg WPM, Segalowitz SJ, Carter CS (2004) Neurocognitive mechanisms of cognitive control: The role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cognition 56(2), 129–140

    Article  Google Scholar 

  • Rushworth MFS, Walton ME, Kennerley SW, Bannerman DM (2004) Action sets and decisions in the medial frontal cortex. Trends Cogn Sci 8(9), 410–417

    Article  PubMed  Google Scholar 

  • Schmitz TW, Johnson SC (2007) Relevance to self: a brief review and framework of neural systems underlying appraisal. Neurosci Biobehav Rev 31(4), 585–596

    Article  PubMed  Google Scholar 

  • Schön D, Anton JL, Roth M, Besson M (2002) An fMRI study of music sight-reading. Neuroreport 13(17), 2285–2289

    Article  PubMed  Google Scholar 

  • Schubotz RI (2007) Prediction of external events with our motor system: towards a new framework. Trends Cogn Sci 11(5), 211–218

    Article  PubMed  Google Scholar 

  • Sergent J, Zuck E, Terriah S, Macdonald B (1992) Distributed neural networkunderlying musical sight-reading and keyboard performance. Science 257(5066), 106–109

    Article  PubMed  Google Scholar 

  • Sloboda JA, O’Neill SA (2001) Emotions in everyday listening to music. In: Juslin PN, Sloboda JA (eds.) Music and Emotion, pp. 415–429. Oxford, Oxford University Press

    Google Scholar 

  • Svoboda E, McKinnon MC, Levine B (2006) The functional neuroanatomy of autobiographical memory: A meta-analysis. Neuropsychologia 44(12), 2189–2208

    Article  PubMed  Google Scholar 

  • Thompson PM, Hayashi KM, de Zubicaray G, Janke AL, Rose SE, Semple J, et al. (2003) Dynamics of gray matter loss in Alzheimer’s disease. J Neurosci 23(3), 994–1005

    PubMed  Google Scholar 

  • Tillmann B, Janata P, Bharucha JJ (2003) Activation of the inferior frontal cortex in musical priming. Cognitive Brain Res 16, 145–161

    Article  Google Scholar 

  • Toiviainen P, Krumhansl CL (2003) Measuring and modeling real-time responses to music: the dynamics of tonality induction. Perception 32(6), 741–766

    Article  PubMed  Google Scholar 

  • Ullen F, Forssberg H, Ehrsson HH (2003) Neural networks for the coordination of the hands in time. J Neurophysiol 89(2), 1126–1135

    Article  PubMed  Google Scholar 

  • Wicker B, Ruby P, Royet JP, Fonlupt P (2003) A relation between rest and the self in the brain? Brain Res Rev 43(2), 224–230

    Article  PubMed  Google Scholar 

  • Zatorre RJ, Evans AC, Meyer E (1994) Neural mechanisms underlying melodic perception and memory for pitch. J Neurosci 14(4), 1908–1919

    PubMed  Google Scholar 

  • Zatorre RJ, Halpern AR (2005) Mental concerts: musical imagery and auditory cortex. Neuron 47(1), 9–12

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag/Wien

About this chapter

Cite this chapter

Janata, P. (2009). Music and the self. In: Haas, R., Brandes, V. (eds) Music that works. Springer, Vienna. https://doi.org/10.1007/978-3-211-75121-3_8

Download citation

Publish with us

Policies and ethics