Skip to main content

A Generalization of the Subspace Theorem With Polynomials of Higher Degree

  • Conference paper
Diophantine Approximation

Part of the book series: Developments in Mathematics ((DEVM,volume 16))

Abstract

1.1 The Subspace Theorem can be stated as follows. Let K be a number field (assumed to be contained in some given algebraic closure of ℚ), n a positive integer, 0 < δ 1 and S a finite set of places of K. For v ∈ S, let \( L_0^{\left( v \right)} , \ldots ,L_n^{\left( v \right)} \) be linearly independent linear forms in [x 0,...,x n ]. Then the set of solutions x ∈ℙn(K) of

$$ \log \left( {\prod\limits_{v \in S} {\prod\limits_{i = 0}^n {\frac{{\left| {L_i^{\left( v \right)} \left( x \right)} \right|_v }} {{\left\| x \right\|_v }}} } } \right) \leqslant - \left( {n + 1 + \delta } \right)h\left( x \right) $$
((1.1))

is contained in the union of finitely many proper linear subspaces of ℙn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chardin, M.: Une majoration de la fonction de Hubert et ses conséquences pour l’interpolation algébrique. Bull. Soc. Math. F. 117, 305–318 (1989)

    MATH  MathSciNet  Google Scholar 

  2. Corvaja, P., Zannier, U.: On a general Thue’s equation. Am. J. Math. 126, 1033–1055 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Evertse, J.-H.: On equations in S-units and the Thue-Mahler equation. Invent. Math. 75, 561–584 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  4. Evertse, J.-H., Ferretti, R.G.: Diophantine inequalities on projective varieties. Int. Math. Res. Not. 2002, 1295–1330 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Evertse, J.-H., Schlickewei, H.P.: A quantitative version of the absolute subspace theorem. J. Reine Angew. Math. 548, 21–127 (2002)

    MATH  MathSciNet  Google Scholar 

  6. Faltings, G., Wüstholz, G.: Diophantine approximations on projective spaces. Invent. Math. 116, 109–138 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ferretti, R.G.: Mumford’s degree of contact and Diophantine approximations. Compos. Math. 121, 247–262 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ferretti, R.G.: Diophantine approximations and toric deformations. Duke Math. J. 118, 493–522 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hodge, W.V.D., Pedoe, D.: Methods of Algebraic Geometry, vol. II, Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  10. Mumford, D.: Stability of projective varieties. Enseign. Math. II Sér. 23, 39–110 (1977)

    MATH  MathSciNet  Google Scholar 

  11. Rémond, G.: Élimination multihomogène. In: Nesterenko, Yu.V., Philippon, P. (eds.) Introduction to Algebraic Independence Theory. Lect. Notes Math., vol. 1752, pp. 53–81. Springer, Heidelberg (2001)

    Google Scholar 

  12. Rémond, G.: Géométrie diophantienne multiprojective. In: Nesterenko, Yu.V., Philippon, P. (eds.) Introduction to Algebraic Independence Theory. Lect. Notes Math., vol. 1752, pp. 95–131. Springer, Heidelberg (2001)

    Google Scholar 

  13. Schlickewei, H.P.: The p-adic Thue-Siegel-Roth-Schmidt theorem. Arch. Math. 29, 267–270 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  14. Schmidt, W.M.: Norm form equations. Ann. Math. 96, 526–551 (1972)

    Article  Google Scholar 

  15. Schmidt, W.M.: Simultaneous approximation to algebraic numbers by elements of a number field. Monatsh. Math. 79, 55–66 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  16. Schmidt, W.M.: The subspace theorem in diophantine approximation. Compos. Math. 96, 121–173 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

To Professor Wolfgang Schmidt on his 70th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this paper

Cite this paper

Evertse, JH., Ferretti, R.G. (2008). A Generalization of the Subspace Theorem With Polynomials of Higher Degree. In: Schlickewei, H.P., Schmidt, K., Tichy, R.F. (eds) Diophantine Approximation. Developments in Mathematics, vol 16. Springer, Vienna. https://doi.org/10.1007/978-3-211-74280-8_9

Download citation

Publish with us

Policies and ethics