A Generalization of the Subspace Theorem With Polynomials of Higher Degree

  • Jan-Hendrik Evertse
  • Roberto G. Ferretti
Part of the Developments in Mathematics book series (DEVM, volume 16)


1.1 The Subspace Theorem can be stated as follows. Let K be a number field (assumed to be contained in some given algebraic closure Open image in new window of ℚ), n a positive integer, 0 < δ 1 and S a finite set of places of K. For v ∈ S, let \( L_0^{\left( v \right)} , \ldots ,L_n^{\left( v \right)} \) be linearly independent linear forms in Open image in new window [x 0,...,x n ]. Then the set of solutions x ∈ℙn(K) of
$$ \log \left( {\prod\limits_{v \in S} {\prod\limits_{i = 0}^n {\frac{{\left| {L_i^{\left( v \right)} \left( x \right)} \right|_v }} {{\left\| x \right\|_v }}} } } \right) \leqslant - \left( {n + 1 + \delta } \right)h\left( x \right) $$
is contained in the union of finitely many proper linear subspaces of ℙn.


Diophantine approximation subspace theorem 

2000 Mathematics subject classification

11J68 11J25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chardin, M.: Une majoration de la fonction de Hubert et ses conséquences pour l’interpolation algébrique. Bull. Soc. Math. F. 117, 305–318 (1989)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Corvaja, P., Zannier, U.: On a general Thue’s equation. Am. J. Math. 126, 1033–1055 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Evertse, J.-H.: On equations in S-units and the Thue-Mahler equation. Invent. Math. 75, 561–584 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Evertse, J.-H., Ferretti, R.G.: Diophantine inequalities on projective varieties. Int. Math. Res. Not. 2002, 1295–1330 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Evertse, J.-H., Schlickewei, H.P.: A quantitative version of the absolute subspace theorem. J. Reine Angew. Math. 548, 21–127 (2002)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Faltings, G., Wüstholz, G.: Diophantine approximations on projective spaces. Invent. Math. 116, 109–138 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ferretti, R.G.: Mumford’s degree of contact and Diophantine approximations. Compos. Math. 121, 247–262 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ferretti, R.G.: Diophantine approximations and toric deformations. Duke Math. J. 118, 493–522 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hodge, W.V.D., Pedoe, D.: Methods of Algebraic Geometry, vol. II, Cambridge University Press, Cambridge (1952)zbMATHGoogle Scholar
  10. 10.
    Mumford, D.: Stability of projective varieties. Enseign. Math. II Sér. 23, 39–110 (1977)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Rémond, G.: Élimination multihomogène. In: Nesterenko, Yu.V., Philippon, P. (eds.) Introduction to Algebraic Independence Theory. Lect. Notes Math., vol. 1752, pp. 53–81. Springer, Heidelberg (2001)Google Scholar
  12. 12.
    Rémond, G.: Géométrie diophantienne multiprojective. In: Nesterenko, Yu.V., Philippon, P. (eds.) Introduction to Algebraic Independence Theory. Lect. Notes Math., vol. 1752, pp. 95–131. Springer, Heidelberg (2001)Google Scholar
  13. 13.
    Schlickewei, H.P.: The p-adic Thue-Siegel-Roth-Schmidt theorem. Arch. Math. 29, 267–270 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Schmidt, W.M.: Norm form equations. Ann. Math. 96, 526–551 (1972)CrossRefGoogle Scholar
  15. 15.
    Schmidt, W.M.: Simultaneous approximation to algebraic numbers by elements of a number field. Monatsh. Math. 79, 55–66 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Schmidt, W.M.: The subspace theorem in diophantine approximation. Compos. Math. 96, 121–173 (1989)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jan-Hendrik Evertse
    • 1
  • Roberto G. Ferretti
    • 2
  1. 1.Mathematisch InstituutUniversiteit LeidenLeidenThe Netherlands
  2. 2.Università della Svizzera ItalianaLuganoSwitzerland

Personalised recommendations