Advertisement

Orthogonality and Digit Shifts in the Classical Mean Squares Problem in Irregularities of Point Distribution

  • William W. L. Chen
  • Maxim M. Skriganov
Part of the Developments in Mathematics book series (DEVM, volume 16)

Abstract

Suppose that \( \mathcal{A}_N \) is a distribution of N > 1 points, not necessarily distinct, in the n-dimensional unit cube U n = [0, l) n , where n ≥ 2. We consider the L2-discrepancy
$$ \mathcal{L}_2 \left[ {\mathcal{A}_N } \right] = \left( {\int\limits_{U^n } {\left| {\mathcal{L}\left[ {\mathcal{A}_N ;Y} \right]} \right|} ^2 dY} \right)^{1/2} , $$
where for every Y = (y1,..., y n) ∈ U n , the local discrepancy \( \mathcal{L}\left[ {\mathcal{A}_N ;Y} \right] \) is given by
$$ \mathcal{L}\left[ {\mathcal{A}_N ;Y} \right] = \# \left( {\mathcal{A}_N \cap B_Y } \right) - N vol B_Y . $$
Here
$$ B_Y = \left[ {0,y_1 } \right) \times \ldots \times \left[ {0,y_n } \right) \subseteq U^n $$
is a rectangular box of volume vol By = y1... y n , and #(S) denotes the number of points of a set S, counted with multiplicity.

Keywords

Irregularities of distribution orthogonality digit shift coding theory 

2000 Mathematics subject classification

11K38 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, W.W.L.: On irregularities of distribution. Mathematika 27, 153–170 (1980)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Chen, W.W.L.: On irregularities of distribution II. Q. J. Math. Oxf. 34, 257–279 (1983)zbMATHCrossRefGoogle Scholar
  3. 3.
    Chen, W.W.L., Skriganov, M.M.: Explicit constructions in the classical mean squares problem in irregularities of point distribution. J. Reine Angew. Math. 545, 67–95 (2002)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Dobrovol’skii, N.M.: An effective proof of Roth’s theorem on quadratic dispersion. Usp. Mat. Nauk 39, 155–156 (1984); Russ. Math. Surv.39, 117–118 (1984)MathSciNetGoogle Scholar
  5. 5.
    Faure, H.: Discrépance de suites associées à un système de numération (en dimension 5). Acta Arith. 41, 337–351 (1982)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Fine, N.J.: On the Walsh functions. Trans. Am. Math. Soc. 65, 373–414 (1949)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Frolov, K.K.: An upper bound for the discrepancy in the Lp-metric. Dokl. Akad. Nauk SSSR 252, 805–807 (1980)MathSciNetGoogle Scholar
  8. 8.
    Golubov, B.I., Efimov, A.V., Skvorčov, V.A.: The Walsh Series and Transformations: Theory and Applications. Kluwer, Dordrecht (1991)Google Scholar
  9. 9.
    Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis, vol. 1. Springer, Heidelberg (1963)zbMATHGoogle Scholar
  10. 10.
    Price, J.J.: Certain groups of orthonormal step functions. Can. J. Math. 9, 413–425 (1957)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Rosenbloom, M.Yu., Tsfasman, M.A.: Codes in the m-metric. Probl. Peredachi Inf. 33, 55–63 (1997); Probl. Inf. Transm. 33, 45–52 (1997)Google Scholar
  12. 12.
    Roth, K.F.: On irregularities of distribution. Mathematika 11, 73–79 (1954)CrossRefGoogle Scholar
  13. 13.
    Roth, K.F.: On irregularities of distribution IV. Acta Arith. 37, 67–75 (1980)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Schipp, F., Wade, W.R., Simon, P.: Walsh Series: An Introduction to Dyadic Harmonic Analysis. Hilger, Bristol (1990)Google Scholar
  15. 15.
    Skriganov, M.M.: Lattices in algebraic number fields and uniform distribution modulo 1. Algebra Anal. 1, 207–228 (1989); Leningr. Math. J. 1, 535–558 (1990)MathSciNetGoogle Scholar
  16. 16.
    Skriganov, M.M.: Constructions of uniform distributions in terms of geometry of numbers. Algebra Anal. 6, 200–230 (1994); St. Petersbg. Math. J. 6, 635–664 (1995)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Skriganov, M.M.: Coding theory and uniform distributions. Algebra Anal. 13, 191–239 (2001); St. Petersbg. Math. J. 13, 301–337 (2002)MathSciNetGoogle Scholar
  18. 18.
    Skriganov, M.M.: Harmonic analysis on totally disconnected groups and irregularities of point distributions. J. Reine Angew. Math. 600, 25–49 (2006)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • William W. L. Chen
    • 1
  • Maxim M. Skriganov
    • 2
  1. 1.Department of MathematicsMacquarie UniversitySydneyAustralia
  2. 2.Steklov Mathematical InstituteSt. PetersburgRussia

Personalised recommendations