New Irrationality Results for Dilogarithms of Rational Numbers

  • Carlo Viola
Part of the Developments in Mathematics book series (DEVM, volume 16)


A natural method to investigate diophantine properties of transcendental (or conjecturally transcendental) constants occurring in various mathematical contexts consists in the search for sequences of good rational approximations, or algebraic approximations with bounded degree, to suitable values of some special transcendental functions, such as the logarithm, or the polylogarithm of order q ≤ 2, or the hypergeometric functions, etc. Traditionally, one employs for this purpose Padé or Padé-type approximations to the functions involved.


Dilogarithm hypergeometric function permutation groups irrationality measures 

2000 Mathematics subject classification

11J82 33B30 33C05 20B35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amoroso, F., Viola, C: Approximation measures for logarithms of algebraic numbers. Ann. Sc. Norm. Super. Pisa Cl. Sci. IV. Ser 30, 225–249 (2001)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Chudnovsky, G.V.: Padé approximations to the generalized hypergeometric functions. I. J. Math. Pures Appl. 58, 445–476 (1979)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Fischler, S.: Groupes de Rhin-Viola et intégrales multiples. J. Théor. Nombres Bordx. 15, 479–534 (2003)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Hata, M.: Rational approximations to the dilogarithm. Trans. Am. Math. Soc. 336, 363–387 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Maier, W.: Potenzreihen irrationalen Grenzwertes. J. Reine Angew. Math. 156, 93–148 (1927)zbMATHGoogle Scholar
  6. 6.
    Rhin, G., Viola, C.: On a permutation group related to ζ(2). Acta Arith. 77, 23–56 (1996)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Rhin, G., Viola, C.: The group structure for ζ(3). Acta Arith. 97, 269–293 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Rhin, G., Viola, C.: The permutation group method for the dilogarithm. Ann. Sc. Norm. Super. Pisa Cl. Sci. V. Ser 4, 389–437 (2005)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Viola, C: Hypergeometric functions and irrationality measures. In: Motohashi, Y. (ed.) Analytic Number Theory. London Mathematical Society Lecture Note Series, vol. 247, pp. 353–360. Cambridge University Press, Cambridge (1997)Google Scholar
  10. 10.
    Viola, C: Birational transformations and values of the Riemann zeta-function. J. Théor. Nombres Bordx. 15, 561–592 (2003)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Viola, C.: The arithmetic of Euler’s integrals. Riv. Mat. Univ. Parma (7) 3*, 119–149 (2004)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Carlo Viola
    • 1
  1. 1.Dipartimento di MatematicaUniversità di PisaPisaItaly

Personalised recommendations