Advertisement

A Note on Lyapunov Theory for Brun Algorithm

  • Fritz Schweiger
Part of the Developments in Mathematics book series (DEVM, volume 16)

Abstract

Regular continued fractions exhibit a number of remarkable properties. We mention three of them.

Keywords

Metric theory of generalized continued fractions 

2000 Mathematics subject classification

11K55 11J70 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernstein, L.: The Jacobi-Perron Algorithm: Its Theory and Application. Lect. Notes Math. 207. Springer, Heidelberg (1971)zbMATHGoogle Scholar
  2. 2.
    Broise-Alamichel, A., Guivarc’h, Y.: Exposants caractéristiques de l’algorithme de Jacobi-Perron et de la transformation associée. Ann. Inst. Fourier 51, 565–686 (2001)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Lagarias, J.C.: The quality of the Diophantine approximations found by the Jacobi-Perron algorithm and related algorithms. Monatsh. Math. 115, 299–328 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Mañé, R.: Ergodic Theory and Differentiate Dynamics. Springer, Heidelberg (1987)Google Scholar
  5. 5.
    Nakaishi, K.: The exponent of convergence for 2-dimensional Jacobi-Perron type algorithms. Monatsh. Math. 132, 141–152 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Schratzberger, B.: The exponent of convergence for Brun’s algorithm in two dimensions. Sitzungsber. Österr. Akad. Wiss. Math.-naturw. Kl. Abt. II207, 229–238 (1998)MathSciNetGoogle Scholar
  7. 7.
    Schweiger, F.: Multidimensional Continued Fractions. Oxford University Press, Oxford (2000)zbMATHGoogle Scholar
  8. 8.
    Schweiger, F.: Diophantine properties of multidimensional continued fractions. In: Dubickas, A., et al. (eds.) Analytic and Probabilistic Methods in Number Theory, pp. 242–255. TEV, Vilnius (2002)Google Scholar
  9. 9.
    Toussaint, H.-J.: Der Algorithmus von Viggo Brun und verwandte Kettenbruchentwicklungen. Dissertation, Technische Universität München, Munich, Germany (1986)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Fritz Schweiger
    • 1
  1. 1.Department of MathematicsUniversity of SalzburgSalzburgAustria

Personalised recommendations