Counting Algebraic Numbers with Large Height I

  • David Masser
  • Jeffrey D. Vaaler
Part of the Developments in Mathematics book series (DEVM, volume 16)


Let ℚ denote the field of rational numbers, Open image in new window an algebraic closure of ℚ, and H : Open image in new window the absolute, multiplicative, Weil height. For each positive integer d and real number \( \mathcal{H} \geqslant 1 \), it is well known that the number Open image in new window of points α in Open image in new window having degree d over ℚ and satisfying \( H\left( \alpha \right) \leqslant \mathcal{H} \) is finite. This is the one-dimensional case of Northcott’s Theorem [8] (see also [5, page 59]). The systematic study of the counting function Open image in new window , and that of related functions in higher dimensions, was begun by Schmidt [10]. It is relatively easy to prove the existence of a positive constant C = C(d) such that and also the existence of positive constants c = c(d) and \( \mathcal{H}_0 = \mathcal{H}_0 \left( d \right) \) such that


Mahler measure height 

2000 Mathematics subject classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chern, S.-J., Vaaler, J.D.: The distribution of values of Mahler’s measure. J. Reine Angew. Math. 540, 1–47 (2001)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Dubickas, A., Konyagin, S.V.: On the number of polynomials of bounded measure. Acta Arith. 86, 325–342 (1998)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Kronecker, L.: Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten. J. Reine Angew. Math. 53, 173–175 (1857)zbMATHGoogle Scholar
  4. 4.
    Landau, E.: Sur quelques théorèmes de M. Petrovic relatifs aux zéros des fonctions analytiques. Bull. Soc. Math. Fr. 33, 251–261 (1905)zbMATHGoogle Scholar
  5. 5.
    Lang, S.: Fundamentals of Diophantine Geometry. Springer, Heidelberg (1983)Google Scholar
  6. 6.
    Loher, T.: Counting points of bounded height. Ph.D. thesis, University of Basel, Basel, Switzerland (2001)Google Scholar
  7. 7.
    Masser, D., Vaaler, J.D.: Counting algebraic numbers with large height II. Trans. Am. Math. Soc. 359, 427–445 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Northcott, D.G.: An inequality in the theory of arithmetic on algebraic varieties. Proc. Camb. Philos. Soc. 45, 502–509, 510–518 (1949)Google Scholar
  9. 9.
    Schanuel, S.H.: Heights in number fields. Bull. Soc. Math. Fr. 107, 433–449 (1979)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Schmidt, W.M.: Northcott’s theorem on heights I. A general estimate. Monatsh. Math. 115, 169–181 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Schmidt, W.M.: Northcott’s theorem on heights II. The quadratic case. Acta Arith. 74, 343–375 (1995)Google Scholar
  12. 12.
    Specht, W.: Zur Zahlentheorie der Polynome IV. Math. Z. 57, 291–335 (1953)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • David Masser
    • 1
  • Jeffrey D. Vaaler
    • 2
  1. 1.Mathematisches InstitutUniversität BaselBaselSwitzerland
  2. 2.Department of MathematicsUniversity of Texas at AustinAustinUSA

Personalised recommendations