Skip to main content

Biomechanics

  • Chapter
Balloon Kyphoplasty

Abstract

Vertebroplasty is being increasingly used for consolidation of osteoporotic vertebrae or other pathological findings; for example, in bone cancer. In this chapter we present a combination of theoretical considerations and in vivo and ex vivo studies on cement injection. The unexpected results reflect the fact that approximately 95% of the overall injection pressure is necessary for cement delivery through the cannula, and only approximately 5% for the dispersion of cement in the spongiosa. One of our most important findings is that the process of cement injection makes conflicting demands on bone cements, which are required to be more viscous and less viscous at the same time. A low viscosity eases cement delivery through the injection cannula, whereas a high viscosity reduces the risk of cement leakage out of the vertebra. The challenge therefore is to develop biomaterials, techniques and/ or devices that can overcome or manage the conflicting demands concerning cement viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baroud G, Steffen T (2005) A new cannula to ease cement injection during vertebroplasty. Eur Spine J 14(5): 474–479

    Article  PubMed  CAS  Google Scholar 

  • Baroud G, Bohner M, Heini P, et al (2004a) Injection biomechanics of bone cements used in vertebroplasty. Biomed Mater Eng 14: 487–504

    PubMed  CAS  Google Scholar 

  • Baroud G, Falk R, Crookshank M, et al (2004b) Experimental and theoretical investigation of the directional permeability of cancellous bone for cement infiltration. J Biomech 37(2): 189–196

    Article  PubMed  CAS  Google Scholar 

  • Baroud G, Martin PL, Cabana F (2006) Ex-vivo experiments of a new injection instrument for vertebroplasty. Spine 31(1): 115–119

    Article  PubMed  Google Scholar 

  • Baroud G, Vant C, Giannitsios D, et al (2005) Effect of vertebral shell on injection pressure and intravertebral pressure in vertebroplasty. Spine 30(1): 68–74

    PubMed  Google Scholar 

  • Baroud G, Wu J, Bohner M, et al (2003) How to determine the permeability for cement infiltration into osteoporotic cancellous bone. Med Eng Phys 25(4): 283–288

    Article  PubMed  CAS  Google Scholar 

  • Bohner M, Gasser B, Baroud G, et al (2003) Theoretical and experimental model to describe the injection of a polymethylmethacrylate cement into a porous structure. Biomaterials 24: 2731–2738

    Article  Google Scholar 

  • Cotten A, Dewatre F, Cortet B, et al (1996) Percutaneous vertebroplasty for osteolytic metastases and myeloma: effect of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up. Radiology 200: 525–530

    PubMed  CAS  Google Scholar 

  • Deramond H, Depriester C, Galibert P, et al (1998) Percutaneous vertebroplasty with polymethylmethacrylate. Radiol Clin North Am 36(3): 533–546

    Article  PubMed  CAS  Google Scholar 

  • Heini PF, Berlemann U, Kaufmann M, et al (2001) Augmentation of mechanical properties in osteoporotic vertebral bones — a biomechanical investigation of vertebroplasty efficacy with different bone cements. Eur Spine J 10(2): 164–171

    Article  PubMed  CAS  Google Scholar 

  • Heini PF, Walchli B, Berlemann U (2000) Percutaneous transpedicular vertebroplasty with PMMA: operative technique and early results. A prospective study for the treatment of osteoporotic compression fractures. Eur Spine J 9(5): 445–450

    Article  PubMed  CAS  Google Scholar 

  • Jensen ME, Evans AJ, Mathis JM, et al (1997) Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects. Am J Neuroradiol 18(10): 1897–1904

    PubMed  CAS  Google Scholar 

  • Krause WR, Miller J, Ng P (1982) The viscosity of acrylic bone cements. J Biomed Mater Res 16(3): 219–243

    Article  PubMed  CAS  Google Scholar 

  • Mathis JM, Barr JD, Belkoff SM, et al (2001) Percutaneous vertebroplasty: a developing standard of care for vertebral compression fractures. Am J Neuroradiol 22(2): 373–381

    PubMed  CAS  Google Scholar 

  • Naumann EA, Fong KE, Keaveny TM (1999) Dependence of intertrabecular permeability on flow direction and anatomic site. Ann Biomed Eng 27(4): 517–524

    Article  Google Scholar 

  • San Millan Ruiz D, Burkhardt K, Jean B, et al (1999) Pathology findings with acrylic implants. Bone 25(2): 85S–90S

    Article  PubMed  CAS  Google Scholar 

  • Wilson DR, Myers ER, Mathis JM, et al (2000) Effect of augmentation on the mechanics of the vertebral wedge fractures. Spine 25(2): 158–165

    Article  PubMed  CAS  Google Scholar 

References

  • Ananthakrishnan D, Lotz JC, Berven S, Puttlitz C (2003) Changes in spinal loading due to vertebral augmentation: vertebroplasty versus kyphoplasty. Annual Meeting of the American Academy of Orthopaedic Surgeons, New Orleans, p 472

    Google Scholar 

  • Baroud G, Goerke U, Beckman L, Steffen T (2001) Physical changes of the vertebral tissue treated with vertebroplasty. XVIIIth Congress of International Society of Biomechanics, Zurich, p 728

    Google Scholar 

  • Baroud G, Nemes J, Ferguson S, Steffen T (2003) Material changes in osteoporotic human cancellous bone following infiltration with acrylic bone cement for a vertebral cement augmentation. Comput Meth in Biomechan Biomed Eng 6(2): 133–139

    Article  CAS  Google Scholar 

  • Baroud G, Nemes J, Heini P, Steffen T (2003) Load shift of the intervertebral disc after a vertebroplasty: a finite-element study. Eur Spine J 12(4): 421–426

    Article  PubMed  CAS  Google Scholar 

  • Belkoff SM, Mathis JM, Erbe EM, Fenton DC (2000) Biomechanical evaluation of a new bone cement for use in vertebroplasty. Spine 25(9): 1061–1064

    Article  PubMed  CAS  Google Scholar 

  • Belkoff SM, Mathis JM, Jasper LE, Deramond H (2001) The biomechanics of vertebroplasty. The effect of cement volume on mechanical behaviour. Spine 26(14): 1537–1541

    Article  PubMed  CAS  Google Scholar 

  • Belkoff SM, Mathis JM, Jasper LE (2002) Ex vivo biomechanical comparison of hydroxyapatite and polymethylmethacrylate cements for use with vertebroplasty. AJNR Am J Neuroradiol 23(10): 1647–1651

    PubMed  Google Scholar 

  • Berlemann U, Ferguson SJ, Nolte LP, Heini PF (2002) Adjacent vertebral failure after vertebroplasty. A biomechanical investigation. J Bone Joint Surg Br 84(5): 748–752

    Article  PubMed  CAS  Google Scholar 

  • Brinckmann P, Frobin W, Hierholzer E, Horst M (1983) Deformation of the vertebral end-plate under axial loading of the spine. Spine 8(8): 851–856

    Article  PubMed  CAS  Google Scholar 

  • De Wijn JR (1976) Poly(methyl methacrylate)-aqueous phase blends: in situ curing porous materials. J Biomed Mater Res 10(4): 625–635

    Article  PubMed  Google Scholar 

  • Dean JR, Ison KT, Gishen P (2000) The strengthening effect of percutaneous vertebroplasty. Clin Radiol 55(6): 471–476

    Article  PubMed  CAS  Google Scholar 

  • Fribourg D, Tang C, Sra P, Delamarter R, Bae H (2004) Incidence of subsequent vertebral fracture after kyphoplasty. Spine 29(20): 2270–2276

    Article  PubMed  Google Scholar 

  • Grados F, Depriester C, Cayrolle G, Hardy N, Deramond H, Fardellone P (2000) Long-term observations of vertebral osteoporotic fractures treated by percutaneous vertebroplasty. Rheumatology (Oxford) 39(12): 1410–1414

    Article  CAS  Google Scholar 

  • Heini PF, Berlemann U, Kaufmann M, Lippuner K, Fankhauser C, van Landuyt P (2001) Augmentation of mechanical properties in osteoporotic vertebral bones — a biomechanical investigation of vertebroplasty efficacy with different bone cement. Eur Spine J 10(2): 164–171

    Article  PubMed  CAS  Google Scholar 

  • Heini PF, Orler R (2004) Vertebroplastik bei hochgradiger Osteoporose. Technik und Erfahrung mit plurisegmentalen Injektionen. Orthopäde 33(1): 22–30

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Kang HS, Choi J-A, Ahn JM (2004) Risk factors of new compression fractures in adjacent vertebrae after percutaneous vertebroplasty. Acta Radiologica 45(4): 440–445(6)

    Article  PubMed  CAS  Google Scholar 

  • Legroux-Gerot I, Lormeau C, Boutry IM, Cotten A, Duquesnoy B, Cortet B (2004) Long-term follow-up of vertebral osteoporotic fractures treated by percutaneous vertebroplasty. Clin Rheumatol 23(4): 310–317

    Article  PubMed  Google Scholar 

  • Liebschner MA, Rosenberg WS, Keaveny TM (2001) Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty. Spine 26(14): 1547–1554

    Article  PubMed  CAS  Google Scholar 

  • Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB, Licata A, Benhamou L, Geusens P, et al (2001) Risk of new vertebral fracture in the year following a fracture. Jama 285(3): 320–323

    Article  PubMed  CAS  Google Scholar 

  • Lu WW, Cheung KM, Li YW, Luk KD, Holmes AD, Zhu QA, Leong JC (2001) Bioactive bone cement as a principal fixture for spinal burst fracture: an in vitro biomechanical and morphologic study. Spine 26(2): 2684–2690; discussion 2690-1

    Article  PubMed  CAS  Google Scholar 

  • Polikeit A, Nolte LP, Ferguson SJ (2003) The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine 28(10): 991–996

    Article  PubMed  Google Scholar 

  • Rockoff SD, Sweet E, Bleustein J (1969) The relative contribution of trabecular and cortical bone strength to the strength of human lumbar vertebrae. Calcif Tissue Res 3: 163–175

    Article  PubMed  CAS  Google Scholar 

  • Rohlmann A, Zander T, Jony A, Weber U, Bergmann G (2005) Einfluss der Wirbelkörpersteifigkeit vor und nach der Vertebroplastik auf den intradiskalen Druck. Biomed Technik 50(5): 148–152

    Article  CAS  Google Scholar 

  • Ross PD, Genant HK, Davis JW, Miller PD, Wasnich RD (1993) Predicting vertebral fracture incidence from prevalent fractures and bone density among non-black, osteoporotic women. Osteoporos Int 3(3): 120–126

    Article  PubMed  CAS  Google Scholar 

  • Sun K, Liebschner AK (2004) Evolution of vertebroplasty: a biomechanical perspective. Annals of Biomed Eng 32(1): 77–91

    Article  Google Scholar 

  • Uppin AA, Hirsch JA, Centenera LV, Pfiefer BA, Pazianos AG, Choi IS (2003) Occurrence of new vertebral body fracture after percutaneous vertebroplasty in patients with osteoporosis. Radiology 226(1): 119–124

    Article  PubMed  Google Scholar 

  • Watts NB, Harris, ST, Genant HK (2001) Treatment of painful osteoporotic vertebral fractures with percutaneous vertebroplasty or kyphoplasty. Osteoporos Int 12(6): 429–437

    Article  PubMed  CAS  Google Scholar 

  • Wilcox RK (2004) Do vertebroplasty cements have the optimum mechanical properties? Transactions of 7th World Biomaterials Congress, Sydney, Abstract 1547

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this chapter

Cite this chapter

Baroud, G., Schleyer, A., Wolf, S. (2008). Biomechanics. In: Becker, S., Ogon, M. (eds) Balloon Kyphoplasty. Springer, Vienna. https://doi.org/10.1007/978-3-211-74221-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-74221-1_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-74220-4

  • Online ISBN: 978-3-211-74221-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics