Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 494))

Abstract

Earthquake foundation design is a challenging task that requires analytical capabilities and extensive understanding of soil behaviour and soil structure interaction. The classical approach involves the determination of the forces applied to the foundation, the seismic demand, and the verification of the bearing capacity, the seismic capacity. However not all situations can be tackled with analyses. Seismic building codes and in particular their chapters on foundation detailing are fundamental to achieve a safe design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed-Zeki, A. S., Pender, M. J., and Fitch, N. R. (1999) “Strain rate effects on the undrained shear strength of Waitemata Residual Clay”, Proc. 8th Australia New Zealand Conference on Geomechanics, Hobart, Vol. 2, pp. 791–796.

    Google Scholar 

  • Applied Technology Council (1996). “ATC 40: The seismic evaluation and retrofit of concrete buildings”. 2 volumes. Redwood City CA.

    Google Scholar 

  • Auvinet G, Mendoza M.J. (1986). “Comportamiento de diversos tipos de cimentacion en la zone lascustre de la Ciudad de Mexico durante el sismo del 19 de septiembre de 1985”, Proceedings Symposium: Los Sismos de 1985; Casos de Mecanica de Suelos, Mexico.

    Google Scholar 

  • Budhu, M and Davies, T G (1987) Nonlinear analysis of laterally loaded piles in cohesionless soils. Canadian Geotechnical Jnl., Vol. 24, pp. 289–296.

    Article  Google Scholar 

  • Chen W.F. (1975). “Limit analysis and soil plasticity”. Elsevier Science Publishing Company.

    Google Scholar 

  • Cremer C., Pecker A., Davenne L. (2000). “Elaboration of a SSI macro-element with uplift of shallow foundations”. Implication of Recent Earthquake on Seismic Risk. Elnashai-Antoniou Eds., Imperial College Press, pp 127–138.

    Google Scholar 

  • Cremer C., Pecker A., Davenne L. (2000). “Cyclic macro-element for soil structure interaction — Material and geometrical non linearities”. Submitted for publication Numerical Methods in Geomechanics.

    Google Scholar 

  • Davies, T G and Budhu, M (1986) Nonlinear analysis of laterally loaded piles in heavily overconsolidated clay, Geotechnique, Vol. 36 No. 4, pp. 527–538.

    Google Scholar 

  • De Barros F.C., Luco E. (1990). “Discrete models for vertical vibrations of surface and embedded foundations”. Earthquake Engineering and Structural Dynamics, vol. 19.

    Google Scholar 

  • Dobry R., Gazetas G. (1988). “Simple methods for dynamic stiffness and damping of floating pile groups”. Geotechnique, vol. 38, No 4.

    Google Scholar 

  • Dormieux L., Pecker A. (1995). “Seismic bearing capacity of a foundation on a cohesionless soil”. Journal of Geotechnical Engineering, ASCE, Vol 121, pp 300–303.

    Article  Google Scholar 

  • Eurocode 9-part 5, “Foundations, retaining structures and geotechnical aspects”. Ref.No prEN 1998-5; 1999

    Google Scholar 

  • Gazetas (1984). “Seismic response of end bearing piles”. Soil Dynamics and Earthquake Engineering, Vol 3, No2, pp 82–93.

    Article  Google Scholar 

  • Gazetas, G and Dobry, R (1984) Horizontal response of piles in layered soils, Jnl. Geotech. Eng., Proc. ASCE, Vol. 110 No. 1, pp. 20–40.

    Google Scholar 

  • Gazetas G (1990) “Foundation vibration”. Foundation Engineering Handbook, Chap. 15, 2nd Edition— Hsai-Yan Fang Eds.

    Google Scholar 

  • Gazetas G., Fan, K., Tazoh T., Shimizu K., Kavvadas M., Makris N., (1992). “Seismic Pile-Group-Structure Interaction”. Piles, under dynamic Loads, ASCE, S. Prakash Ed., pp. 56–93.

    Google Scholar 

  • Gazetas G., Mylonakis G. (1998). “Seismic soil structure interaction: new evidence and emerging issues”. Geotechnical Earthquake Engineering and Soil Dynamics, ASCE, II, pp 1119–1174.

    Google Scholar 

  • Halling, MW, Womack, KC, Muhamad, I, and Rollins, KM (2000) Vibrational testing of a full-scale pile group in soft clay. Proc. 12th World Conference on Earthquake Engineering. Auckland. Paper 1745.

    Google Scholar 

  • Idriss I.M., Seed H.B. (1968) “Seismic response of horizontal soil layers”. Journal of Soil Mechanics and Foundation Division, ASCE, vol. 96, No SM4.

    Google Scholar 

  • Kavvadas M., Gazetas G., (1993). “Kinematic Seismic Response and Bending of Free-Head Piles in Layered Soil”. Geotechnique, Vol. 43, No 2, pp 207–222.

    Google Scholar 

  • Kausel E., Roesset J.M. (1974). “Soil Structure Interaction for Nuclear Containment Structures”. Proc. ASCE, Power Division Specialty Conference, Boulder, Colorado.

    Google Scholar 

  • Lysmer J. (1978). “Analytical procedures in soil dynamics”. Earthquake Engineering and Soil Dynamics Vol. III, Pasadena—Ca, pp. 1267–1316.

    Google Scholar 

  • Makris N., Gazetas G., (1992). “Dynamic Pile-Soil-Pile Interaction. Part II: Lateral and Seismic Response”. Earthquake Engineering and Structural Dynamics, Vol. 21, pp 145–162.

    Article  Google Scholar 

  • Masing G. (1926). “Eigensprannung und Verfestigung beim Messing” Proceedings International Congress of Applied Mechanics.

    Google Scholar 

  • Matlock H., Reese L. C. (1960). “Generalized Solutions for Laterally Loaded Piles”. Journal of Soil Mechanics and Foundation Division, ASCE, Vol 86, SM5, pp. 63–91.

    Google Scholar 

  • Newmark N. (1965). “Effects of earthquakes on dams and embankments”. Geotechnique, Vol. XV(2), pp 139–160.

    Google Scholar 

  • Nova R., Montrasio L. (1991). “Settlements of shallow foundations on sand”. Geotechnique, 41, no2, pp. 243–256.

    Google Scholar 

  • Paolucci R. (1997). “Simplified evaluation of earthquake induced permanent displacement of shallow foundations”. Journal of Earthquake Engineering, Vol 1, no3, pp 563–579.

    Article  Google Scholar 

  • Paolucci R., Pecker A. (1997). “Seismic bearing capacity of shallow strip foundations on dry soils”. Soils and Foundation, Vol 37, no3, pp 95–105.

    Google Scholar 

  • Pecker A., Salençon J. (1991). “Seismic bearing capacity of shallow strip foundations on clay soils”. CENAPRED, Proceedings of the International Workshop on Seismology and Earthquake Engineering, Mexico, pp 287–304.

    Google Scholar 

  • Pecker A. (1995). “Seismic design of shallow foundation”. State of the Art: 10th European Conference on Earthquake Engineering, Duma Ed., Balkema, pp 1001–1010.

    Google Scholar 

  • Pecker A., Salençon J., Auvinet G., Romo M.P., Verzurra L. (1995) “Seismic bearing capacity of foundations on soft soils”. Final Report to European Commission—Contract CI1—CT92-0069.

    Google Scholar 

  • Pecker A. (1997). “Analytical formulae for the seismic bearing capacity of shallow strip foundation”. Seismic Behavior of Ground and Geotechnical Structures, Seco e Pinto Ed., Balkema, pp 261–268.

    Google Scholar 

  • Pecker A. (1998). “Rion Antirion Bridge—Lumped parameter model for seismic soil structure interaction analyses—Principles and validation”. Geodynamique et Structure Report FIN-P-CLC-MG-FOU-X-GDS00060-Prepared for Gefyra Kinopraxia.

    Google Scholar 

  • Pedretti S. (1998). “Nonlinear seismic soil-foundation interaction: analysis and modelling method”. PhD Thesis Dpt Ing Structurale, Politecnico di Milano.

    Google Scholar 

  • Pender M. (1993). “Aseismic Pile Foundation design Analysis”. Bulletin of the New Zealand National Society for Earthquake Engineering. Vol. 26, No 1, pp 49–160.

    Google Scholar 

  • Pender, MJ (1994) “Components of the stiffness of pile raft foundations. Proc. XIII International Conference on Soil Mechanics and Foundation Engineering. New Delhi. Vol. 2, pp. 923–928.

    Google Scholar 

  • Pender, MJ (1994) “Earthquake response of structures on pile group foundations”. Proc. 1st ROC-NZ Workshop on Earthquake Engineering, Taiwan, May, Huei-Tsyr Chen editor, Taiwanese National Centre for Research on Earthquake Engineering, pp 32–50.

    Google Scholar 

  • Pender, M.J. (1995). “Earthquake Resistant design of Foundations”. Keynote address Pacific Conference on Earthquake Engineering, PCEE95, Melbourne.

    Google Scholar 

  • Pender M.J., Pranjoto S., (1996). “Gapping effects during cyclic lateral loading of piles in clay”. Proceedings 11th World Conference on Earthquake Engineering—Acapulco.

    Google Scholar 

  • Pender M.J. (1999). “Geotechnical Earthquake Engineering design practice in New-Zealand”. Proceedings of the 2nd International Conference on Earthquake Geotechnical Engineering. Sêco e Pinto Ed., Balkema.

    Google Scholar 

  • PREC 8 (1996). (Prenormative Research in Support of Eurocode 8) “Seismic behavior and design of foundation and retaining structures”. Facioli-Paolucci Eds., Report no2.

    Google Scholar 

  • Richards R., Elms D.G., Budhu M. (1993). “Seismic bearing capacity and settlements of shallow foundations”. Journal of Geotechnical Engineering, ASCE, Vol 119 no7, pp 662–674.

    Article  Google Scholar 

  • Romo M. (1995) “Clay behaviour ground response and soil-structure interaction studies in Mexico City”, Proc. 3rd. Conf. on Recent Advances in Geotech. Earthq. Engng. and Soil Dynamics, Vol. 2, pp. 1039–1051.

    Google Scholar 

  • Salençon J. (1983). “Calcul à la rupture et analyse limite” Presses de lľEcole Nationale des Ponts et Chaussées, Paris.

    Google Scholar 

  • Salençon J. (1990). “An introduction to the yield design theory and its application to soil mechanics”. European Journal of Mechanics A/Solids, Vol 9(5), pp 477–500.

    MATH  MathSciNet  Google Scholar 

  • Salençon J., Pecker A. (1994a). “Ultimate bearing capacity of shallow foundations under inclined and eccentric loads. Part 1: Purely cohesive soil”. European Journal of Mechanics A/Solids, 14, no3, pp. 349–375.

    Google Scholar 

  • Salençon J., Pecker A. (1994b). “Ultimate bearing capacity of shallow foundations under inclined and eccentric loads. Part II: Purely cohesive soil without tensile strength”. European Journal of Mechanics A/Solids, 14,no3, pp. 377–396.

    Google Scholar 

  • Sarma S.K., Iossifelis I.S. (1990). “Seismic bearing capacity factors of shallow strip footings”. Geotechnique, Vol. 40, pp 265–273.

    Google Scholar 

  • Tabesh, A. and Poulos, H G (1999) Kinematic versus static interaction of pile and soil, Proc. 8th Australia New Zealand Conference on Geomechanics, Hobart, Vol. 1, pp. 445–450.

    Google Scholar 

  • Ukritchon B., Whittle A.J., Sloan S.W. (1998). “Undrained limit analysis for combined loading of strip footings on clay”. Journal of Geotechnical and Geoenvironmental Engineering. March pp 265–275.

    Google Scholar 

  • Wolf J.P. (1994). “Foundation vibration analysis using simple physical models”. Prentice Hall Inc.

    Google Scholar 

  • Yasuda, S and Berrill, JB (2000) Observations of the earthquake response of foundations in soil profiles containing saturated sands, GeoEng 2000.

    Google Scholar 

  • Zeng X., Steedman R.S. (1998). “Bearing capcity failures of shallow foundations in earthquakes”. Geotechnique, 48, no2, pp. 235–256.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 CISM

About this chapter

Cite this chapter

Pecker, A. (2007). Earthquake Foundation Design. In: Pecker, A. (eds) Advanced Earthquake Engineering Analysis. CISM International Centre for Mechanical Sciences, vol 494. Springer, Vienna. https://doi.org/10.1007/978-3-211-74214-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-74214-3_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-74213-6

  • Online ISBN: 978-3-211-74214-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics