Skip to main content

Interface Waves in Pre-Stressed Incompressible Solids

  • Chapter
Waves in Nonlinear Pre-Stressed Materials

Part of the book series: CISM Courses and Lectures ((CISM,volume 495))

  • 1066 Accesses

Abstract

We study incremental wave propagation for what is seemingly the simplest boundary value problem, namely that constitued by the plane interface of a semi-infinite solid. With a view to model loaded elastomers and soft tissues, we focus on incompressible solids, subjected to large homogeneous static deformations. The resulting strain-induced anisotropy complicates matters for the incremental boundary value problem, but we transpose and take advantage of powerful techniques and results from the linear anisotropic elastodynamics theory. In particular we cover several situations where fully explicit secular equations can be derived, including Rayleigh and Stoneley waves in principal directions, and Rayleigh waves polarized in a principal plane or propagating in any direction in a principal plane. We also discuss the merits of polynomial secular equations with respect to more robust, but less transparent, exact secular equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • D.M. Barnett. Bulk, surface, and interfacial waves in anisotropic linear elastic solids. International Journal of Solids and Structures, 37:45–54, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  • D.M. Barnett and J. Lothe. Free surface (Rayleigh) waves in anisotropic elastic half-spaces: the surface impedance method. Proceedings of the Royal Society of London, Series A, 402:135–152, 1985.

    MATH  MathSciNet  Google Scholar 

  • M.A. Biot. Surface instability of rubber in compression. Applied Science Research, Series A, 12:168–182, 1963.

    MATH  Google Scholar 

  • Ph. Boulanger and M. Hayes. Finite-amplitude waves in deformed Mooney-Rivlin material. Quarterly Journal of Mechanics and Applied Mathematics, 45:575–593, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Chadwick. Continuum Mechanics. Allen & Unwin, 1976.

    Google Scholar 

  • P. Chadwick. Interfacial and surface waves in pre-strained isotropic elastic media. ZAMP, 46:S51–S71, 1995.

    MATH  MathSciNet  Google Scholar 

  • P. Chadwick. The application of the Stroh formalism to prestressed elastic media. Mathematics and Mechanics of Solids, 2:379–403, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Chadwick and D.A. Jarvis. Surface waves in a pre-stressed elastic body. Proceedings of the Royal Society of London, Series A, 366:517–536, 1979a.

    MATH  MathSciNet  Google Scholar 

  • P. Chadwick and D.A. Jarvis. Interfacial waves in a pre-strained neo-Hookean body. Quarterly Journal of Mechanics and Applied Mathematics, 32:387–399, 1979b.

    Article  MATH  MathSciNet  Google Scholar 

  • B. Collet and M. Destrade. Explicit secular equations for piezoacoustic surface waves: Shear-horizontal modes. Journal of the Acoustical Society of America, 116:3432–3442, 2004.

    Article  Google Scholar 

  • B. Collet and M. Destrade. Explicit secular equations for piezoacoustic surface waves: Rayleigh modes. Journal of Applied Physics, 98:054903, 2005.

    Article  Google Scholar 

  • P. Connor and R.W. Ogden. The effect of shear on the propagation of elastic surface waves. International Journal of Engineering Science, 33:3432–3442, 1995.

    Article  MathSciNet  Google Scholar 

  • P. Connor and R.W. Ogden. The influence of shear strain and hydrostatic stress on stability and elastic waves in a layer. International Journal of Engineering Science, 34:375–397, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  • P.K. Currie. The secular equation for Rayleigh waves on elastic crystals. Quarterly Journal of Mechanics and Applied Mathematics, 32:163–173, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Destrade. Finite-amplitude inhomogeneous plane waves in a deformed Mooney-Rivlin material. Quarterly Journal of Mechanics and Applied Mathematics, 53:343–361, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Destrade. Small-amplitude inhomogeneous plane waves in a deformed Mooney-Rivlin material. Quarterly Journal of Mechanics and Applied Mathematics, 55:109–126, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Destrade. Elastic interface acoustic waves in twinned crystals. International Journal of Solids and Structures, 40:7375–7383, 2003.

    Article  MATH  Google Scholar 

  • M. Destrade. On interface waves in misoriented pre-stressed incompressible elastic solids. IMA Journal of Applied Mathematics, 70:3–14, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Destrade and Y.B. Fu. The speed of interfacial waves polarized in a symmetry plane. International Journal of Engineering Science, 44:26–36, 2006.

    Article  MathSciNet  Google Scholar 

  • M. Destrade and R.W. Ogden. Surface waves in a stretched and sheared incompressible elastic material. International Journal of Non Linear Mechanics, 40:241–253, 2005.

    Article  MATH  Google Scholar 

  • M. Destrade, M. Otténio, A.V. Pichugin, and G.A. Rogerson. Non-principal surface waves in deformed incompressible materials. International Journal of Engineering Science, 43:1092–1106, 2005.

    Article  MathSciNet  Google Scholar 

  • M.A. Dowaikh and R.W. Ogden. On surface waves and deformations in a pre-stressed incompressible elastic solid. IMA Journal of Applied Mathematics, 44:261–284, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  • M.A. Dowaikh and R.W. Ogden. Interfacial waves and deformations in pre-stressed elastic media. Proceedings of the Royal Society of London, Series A, 433:313–328, 1991.

    MATH  MathSciNet  Google Scholar 

  • J.N. Flavin. Surface waves in pre-stressed Mooney material. Quarterly Journal of Mechanics and Applied Mathematics, 16:441–449, 1963.

    Article  MATH  MathSciNet  Google Scholar 

  • Y.B. Fu. Existence and uniqueness of edge waves in a generally anisotropic elastic plate. Quarterly Journal of Mechanics and Applied Mathematics, 56:605–616, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  • Y.B. Fu. An explicit expression for the surface-impedance matrix of a generally anisotropic incompressible elastic material in a state of plane strain. International Journal of Non Linear Mechanics, 40:229–239, 2005a.

    Article  MATH  Google Scholar 

  • Y.B. Fu. An integral representation of the surface-impedance tensor for incompressible elastic materials. Journal of Elasticity, 81:75–90, 2005b.

    Article  MATH  Google Scholar 

  • Y.B. Fu and D.W. Brookes. An explicit expression for the surface-impedance tensor of a compressible monoclinic material in a state of plane strain. IMA Journal of Applied Mathematics, 71:434–445, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  • Y.B. Fu and A. Mielke. A new identity for the surface impedance matrix and its application to the determination of surface-wave speeds. Proceedings of the Royal Society of London, Series A, 458:2523–2543, 2002.

    MATH  MathSciNet  Google Scholar 

  • A.N. Gent. A new constitutive relation for rubber. Rubber Chemistry and Technology, 69:59–61, 1996.

    MathSciNet  Google Scholar 

  • A.N. Guz. Elastic waves in bodies with initial (residual) stresses. International Applied Mechanics, 38:23–59, 2002.

    Article  MathSciNet  Google Scholar 

  • M.A. Hayes and R.S. Rivlin. Surface waves in deformed elastic materials. Archives for Rational Mechanics and Analysis, 8:358–380, 1961.

    MATH  MathSciNet  Google Scholar 

  • C.O. Horgan and G. Saccomandi. A description of arterial wall mechanics using limiting chain extensibility constitutive models. Biomechanics Modeling in Mechanobiology, 1:251–266, 2003.

    Article  Google Scholar 

  • G. Huet. Fronts d’Ondes Ultrasonores à la Surface d’un Milieu Semi-Infini Anisotrope: Théorie des Rayons Réels et Complexes. PhD Thesis, Université de Bordeaux 1, 2006.

    Google Scholar 

  • W. Hussain and R.W. Ogden. Reflection and transmission of plane waves at a shear-twin interface. International Journal of Engineering Science, 38:1789–1810, 2000.

    Article  MathSciNet  Google Scholar 

  • K.A. Ingebrigsten and A. Tonning. Elastic surface waves in crystals. Physical Review, 184:942–951, 1969.

    Article  Google Scholar 

  • A.R. Karduna, H.R. Halerpin, and F.C.P. Yin. Experimental and numerical analyses of indentation in finite-sized isotropic and anisotropic rubber-like materials. Annals of Biomedical Engineering, 25:1009–1016, 1997.

    Google Scholar 

  • J. Merodio and R.W. Ogden. Material instabilities in fiber-reinforced nonlinearly elastic solids under plane deformation. Archives of Mechanics, 54:525–552, 2002.

    MATH  MathSciNet  Google Scholar 

  • V.G. Mozhaev. Approximate analytical expressions for the velocity of Rayleigh waves in isotropic media and on the basal plane in high-symmetry crystals. Soviet Physics Acoustics, 37:1009–1016, 1991.

    Google Scholar 

  • V.G. Mozhaev. Some new ideas in the theory of surface acoustic waves in anisotropic media. In D.F. Parker and A.H. England, editors, IUTAM Symposium on Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics, pages 455–462. Kluwer, 1995.

    Google Scholar 

  • R.W. Ogden. Elements of the theory of finite elasticity. In Y.B. Fu and R.W. Ogden, editors, Nonlinear Elasticity: Theory and Applications, pages 1–58. Cambridge University Press, 2001.

    Google Scholar 

  • R.W. Ogden. List of publications. Mathematics and Mechanics of Solids, 8,9:449–450, 3–4, 442–443, 2003, 2004.

    MathSciNet  Google Scholar 

  • Y.-H. Pao, W. Sachse, and H. Fukuoka. Acoustoelasticity and ultrasonic measurements of residual stresses. In W.P. Mason and R.N. Thurston, editors, Physical Acoustics, Vol. 17, pages 61–143. Academic Press, 1984.

    Google Scholar 

  • A.V. Pichugin. Asymptotic Models for Long Wave Motion in a Pre-Stressed Incompressible Elastic Plate. PhD Thesis, University of Salford, 2001.

    Google Scholar 

  • M.L. Raghavan and D.A. Vorp. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. Journal of Biomechanics, 33:475–482, 2000.

    Article  Google Scholar 

  • Lord Rayleigh. On waves propagated along the plane surface of an elastic solid. Proceedings of the London Mathematical Society, 17:4–11, 1885.

    Article  Google Scholar 

  • G.A. Rogerson and K.J. Sandiford. Harmonic wave propagation along a non-principal direction in a pre-stressed elastic plate. International Journal of Engineering Science, 37:1663–1691, 1999.

    Article  MathSciNet  Google Scholar 

  • G. Saccomandi. Phenomenology of rubber-like materials, CISM Lecture Notes 452. In G. Saccomandi and R.W. Ogden, editors, Mechanics and Thermomechanics of Rubberlike Solids, pages 91–134. Springer, 2004.

    Google Scholar 

  • R. Stoneley. Elastic waves at the surface of separation of two solids. Proceedings of the Royal Society of London, 106:416–428, 1924.

    Article  Google Scholar 

  • A.N. Stroh. Some analytic solutions for rayleigh waves in cubic crystals. Journal of Mathematics and Physics, 41:77–103, 1962.

    MATH  MathSciNet  Google Scholar 

  • D.B. Taylor. Surface waves in anisotropic media: the secular equation and its numerical solution. Proceedings Royal Society of London, Series A, 376:265–300, 1981.

    Article  MATH  Google Scholar 

  • D.B. Taylor and P.K. Currie. The secular equation for Rayleigh waves on elastic crystals ii: corrections and additions. Quarterly Journal of Mechanics and Applied Mathematics, 34:231–234, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  • R.M. Taziev. Bipartial surface acoustic waves. Soviet Physics Acoustics, 33:100–103, 1987.

    Google Scholar 

  • R.M. Taziev. Dispersion relation for acoustic waves in an anisotropic elastic half-space. Soviet Physics Acoustics, 35:535–538, 1989.

    Google Scholar 

  • I. Thompson, I.D. Abrahams, and A.N. Norris. On the existence of flexural edge waves on thin orthotropic plates. Journal of the Acoustical Society of America, 112:1756–1765, 2002.

    Article  Google Scholar 

  • T.C.T. Ting. Anisotropic Elasticity: Theory and Applications. University Press, 1996.

    Google Scholar 

  • T.C.T. Ting. The polarization vector and secular equation for surface waves in an anisotropic half-space. International Journal of Solids and Structures, 41:2065–2083, 2004.

    Article  MATH  Google Scholar 

  • T.C.T. Ting. The polarization vectors at the interface and the secular equation for Stoneley waves in monoclinic bimaterials. Proceedings of the Royal Society of London, Series A, 461:711–731, 2005.

    MATH  MathSciNet  Google Scholar 

  • L.R.G. Treloar. The Physics of Rubber Elasticity. Clarendon Press, 1949.

    Google Scholar 

  • A.J. Willson. Surface and plate waves in biaxially-stressed elastic media. Pure and Applied Geophysics, 102:182–192, 1973a.

    Article  Google Scholar 

  • A.J. Willson. Surface waves in uniaxially-stressed Mooney material. Pure and Applied Geophysics, 112:352–364, 1973b.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 CISM, Udine

About this chapter

Cite this chapter

Destrade, M. (2007). Interface Waves in Pre-Stressed Incompressible Solids. In: Destrade, M., Saccomandi, G. (eds) Waves in Nonlinear Pre-Stressed Materials. CISM Courses and Lectures, vol 495. Springer, Vienna. https://doi.org/10.1007/978-3-211-73572-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-73572-5_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-73571-8

  • Online ISBN: 978-3-211-73572-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics