Skip to main content

Introduction to the Prediction of Wind Loads on Buildings by Computational Wind Engineering (CWE)

  • Chapter
Wind Effects on Buildings and Design of Wind-Sensitive Structures

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 493))

Abstract

In this chapter the numerical prediction of wind loads on buildings as a branch of Computational Wind Engineering (CWE) is introduced. First the different simulation approaches are described with their corresponding basic equations and the necessary turbulence models. The numerical solution of the systems of equations is sketched and the most important aspects and their influence on the computational results are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldama, A. A. (1990). Filtering Techniques for Turbulent Flow Simulation. Berlin: Springer Verlag.

    MATH  Google Scholar 

  • Baetke, F., Werner, H. and Wengle, H. (1990). Numerical Simulation of Turbulent Flow over Surface Mounted Obstacles with Sharp Edges and Corners. J. Wind Eng. Ind. Aerodyn. 35:129–147.

    Article  Google Scholar 

  • Bardina, J., Ferziger, J. H., and Reynolds, W. C. (1983). Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flow. Report TF-19, Thermosciences Division, Dept. Mechanical Engineering, Stanford University.

    Google Scholar 

  • Bartzis, J.G., Vlachogiannis, D. and Sfetsos, A. (2004). Thematic area 5: Best practice advice for environmental flows. The QNET-CFD Network Newsletter 2:34–39.

    Google Scholar 

  • Bitsuamlak, G., Stathopoulos, T., and Bedard, C. (2004). Numerical evaluation of wind flow over complex terrain: Review. Journal of Aerospace Engineering 17: 135–145.

    Article  Google Scholar 

  • Blocken, B., Stathopoulos, T. and Carmeliet, J. (2006). CFD simulation of the atmospheric boundary layer — wall function problems. Atmospheric Environment, accepted for publication.

    Google Scholar 

  • Bottema, M. (1997). Turbulence closure model “constants” and the problems of “inactive” atmospheric turbulence. J. Wind Eng. Ind. Aerodyn. 67&68: 897–908.

    Article  Google Scholar 

  • Breuer, M., Jovičić, N., Mazaev, K. (2003). Comparison of DES, RANS and LES for the separated flow around a flat plate at high incidence. Int. J. Numer. Meth. Fluids 41:357–388.

    Article  MATH  Google Scholar 

  • Casey, M. and Wintergerste, T., eds. (2000). ERCOFTAC SIG “Quality and Trust in Industrial CFD”: Best Practice Guidelines. ERCOFTAC.

    Google Scholar 

  • Cebeci, T., and Bradshaw, P. (1977). Momentum Transfer in Boundary Layers. New York: Hemisphere.

    MATH  Google Scholar 

  • Chen, C.-J., and Patel, V. C. (1988). Near-wall turbulence models for complex flows including separation. AIAA Journal 26: 641–648.

    Google Scholar 

  • Craft, T.J., Graham, L.J.W. and Launder, B.E. (1993). Impinging jet studies for turbulence models assessment — II. An examination of the performance of four turbulence models. Int. J. Heat Mass Transfer 36: 2685–2697.

    Article  Google Scholar 

  • Craft, T.J., Launder, B.E. and Suga, K. (1996). Development and application of a cubic eddy-viscosity model of turbulence. Int. J. Heat and Fluid Flow 17: 108–115.

    Article  Google Scholar 

  • Durbin, P. A. (1996). On the k-ε stagnation point anomaly. Int. J. Heat and Fluid Flow 17: 89–90.

    Article  Google Scholar 

  • Durbin, P. A., and Petterson Reif, B. A. (2001). Statistical Theory and Modeling for Turbulent Flows. Chichester: Wiley.

    MATH  Google Scholar 

  • Durbin, P. A., Medic, G., Seo, J.-M., Eaton, J. K., and Song, S. (2001). Rough wall modification of two-layer k-ε. ASME Journal of Fluids Engineering 123: 16–21.

    Article  Google Scholar 

  • Dyrbye, C, and Hansen, S. O. (1997). Wind Loads on Structures. Chichester: Wiley.

    Google Scholar 

  • Ferziger, J.H., and Perić, M. (2002). Computational Methods for Fluid Dynamics, 3rd Edition. Berlin: Springer Verlag.

    MATH  Google Scholar 

  • FLUENT (2005). FLUENT V6.2 User’s Guide. Lebanon NH: Fluent Inc.

    Google Scholar 

  • Franke, J., Hirsch, C, Jensen, A. G., Krüs, H. W., Schatzmann, M., Westbury, P. S., Miles, S. D., Wisse, J. A., and Wright, N. G. (2004). Recommendations on the Use of CFD in Wind Engineering. In van Beeck, J. P. A. J., ed., Proceedings of the International Conference on Urban Wind Engineering and Building Aerodynamics: COST Action C14 — Impact of Wind and Storm on City Life and Built Environment. Rhode-Saint-Genèse: von Karman Institute for Fluid Dynamics. C.1.1–C.1.11.

    Google Scholar 

  • Fröhlich, J., and Rodi, W. (2002). Introduction to Large Eddy Simulation of Turbulent Flows. In Launder, B. E., and Sandham, N. D., eds., Closure Strategies for Turbulent and Transitional Flows. Cambridge: Cambridge University Press. 267–298.

    Google Scholar 

  • Fu, S., Launder, B. E., and Tselepidakis, D. P. (1987). Accomodating the effects of high strain rates in modelling the pressure-strain correlation. Thermofluids report TFD/87/5, Manchester: UMIST.

    Google Scholar 

  • Germano, M., Piomelli, U., Moin, P., and Cabot, W. H. (1991). A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3: 1760–1765.

    Article  MATH  Google Scholar 

  • Geurts, B. J. (2004). Elements of direct and large-eddy simulation. Philadelphia PA: Edwards.

    Google Scholar 

  • Gibson, M. M., and Launder, B. E. (1978). Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech. 86: 491–511.

    Article  MATH  Google Scholar 

  • Ghosal, S. and Moin, P. (1995). The basic equations for the large-eddy simulation of turbulent flows in complex geometry. J. Comput. Phys. 118: 24–37.

    Article  MATH  MathSciNet  Google Scholar 

  • Grinstein, F. F. and Fureby, C. (2004). From canonical to complex flows: Recent progress on Monotonically Integrated LES. Comput. Sci. and Eng. 6: 37–49.

    Google Scholar 

  • Grötzbach, G. (1977). Direct numerical simulation of secondary currents in turbulent channel flow. In Fiedler, H., ed., Lecture Notes in Physics 76. Berlin: Springer Verlag. 308–319.

    Google Scholar 

  • Hargreaves, D.M. and Wright, N.G. (2006). On the use of the k-ε model in commercial CFD software to model the neutral atmospheric boundary layer. J. Wind Eng. Ind. Aerodyn. doi:10.1016/j.jweia. 2006. 08.002.

    Google Scholar 

  • Hirsch C, Bouffioux, V. and Wilquem F. (2002). CFD simulation of the impact of new buildings on wind comfort in an urban area. In Augusti, G., Boni, C. and C. Sacré, C, eds., Proceedings of the Workshop Impact of Wind and Storm on City life and Built Environment. Nantes: CSTB. 164–171.

    Google Scholar 

  • Holmes, J. D. (2001). Wind Loading of Structures. London: Spon Press.

    Google Scholar 

  • Hoxey, R. P., Richards, P. J., and Short, J. L. (2002). A 6m cube in an atmospheric boundary layer flow. Parti. Full-scale and wind-tunnel results. Wind and Structures 5: 165–176.

    Google Scholar 

  • Kato, M., and Launder, B.E. (1993). The modeling of turbulent flow around stationary and vibrating square cylinders. In Proceedings of the Ninth Symposium on Turbulent Shear Flows.

    Google Scholar 

  • Kondo, K., Murakami, S. and Mochida, A. (1997). Generation of velocity fluctuations for inflow boundary condition of LES, J. Wind Eng. Ind. Aerodyn. 67&68: 51–64.

    Article  Google Scholar 

  • Launder, B. E. and Spalding, D. B. (1972). Lectures in Mathematical Models of Turbulence. London: Academic Press.

    MATH  Google Scholar 

  • Leonard, B. P. (1979). A stable and accurate convection modelling procedure based on quadratic upstream interpolation. Comp. Meth. Appl. Mech. Engineering 19: 59–98.

    Article  MATH  Google Scholar 

  • Lien, F. S., and Leschziner, M. A. (1994). Assessment of turbulent transport models including non-linear RNG eddy-viscosity formulation and second-moment closure. Computers & Fluids 23: 983–1004.

    Article  MATH  Google Scholar 

  • Ligrani, P. M., and Moffat, R. J. (1986). Structure of transitionally rough and fully rough turbulent boundary layers. J. Fluid Mech. 162:69–98.

    Article  MathSciNet  Google Scholar 

  • Maruyama, T. (1999). Surface and inlet boundary conditions for the simulation of turbulent boundary layer over complex rough surfaces. J. Wind Eng. Ind. Aerodyn. 81: 311–322.

    Article  Google Scholar 

  • Mason, PJ. and Callen, N.S. (1986). On the magnitude of the subgrid-scale eddy coefficient in large-eddy simulations of turbulent channel flow. J. Fluid Mech. 162: 439–462.

    Article  MATH  MathSciNet  Google Scholar 

  • Mochida, A., Tominaga, Y., Murakami, S., Yoshie, R., Ishihara, T., and Ooka, R. (2002). Comparison of various k-ε models and DSM to flow around a high rise building — report of AIJ cooperative project for CFD prediction of wind environment. Wind and Structures 5: 227–244.

    Google Scholar 

  • Murakami, S. (1998). Overview of turbulence models applied in CWE-1997. J. Wind Eng. Ind. Aerodyn. 74–76: 1–24.

    Article  Google Scholar 

  • Nakayama, H., Tamura, T. and Okuda, Y. (2005). LES study of fluctuating dispersion of hazardous gas in urban canopy. In Náprstek, J., and Pirner, M., eds., Proceedings of the 4th European-African Conference on Wind Engineering, Prague, Paper #168.

    Google Scholar 

  • Nozawa, K. and Tamura, T. (2002). Large eddy simulation of the flow around a low-rise building immersed in a rough-wall turbulent boundary layer. J. Wind Eng. Ind. Aerodyn. 90: 1151–1162.

    Article  Google Scholar 

  • Nozawa, K., and Tamura, T. (2003). Numerical prediction of pressure on a high-rise building immersed in a turbulent boundary layer using LES. In Proceedings of the Annual Meeting of JACWE, 169–170.

    Google Scholar 

  • Oberkampf, W. L., Trucano, T. G., and Hirsch, C. (2004). Verification, validation, and predictive capability in computational engineering and physics. Appl. Mech. Rev. 57: 345–384.

    Article  Google Scholar 

  • Oliveira, P. J., and Younis, B. A. (2002). On the prediction of turbulent flows around full-scale buildings. J. Wind Eng. Ind. Aerodyn. 86: 203–220.

    Article  Google Scholar 

  • Patel, V. C, Rodi, W., and Scheurer, G. (1984). Turbulence modeling for near-wall and low Reynolds number flows: a review. AIAA Journal 23: 1308–1319.

    Article  Google Scholar 

  • Pope, S.B. (1975). A more general effective-viscosity hypothesis. J. Fluid Mech. 72: 331–340.

    Article  MATH  Google Scholar 

  • Pope, S. B. (2000). Turbulent Flows. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Richards, P.J. and Hoxey, R.P. (1993). Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model. J. Wind Eng. Ind. Aerodyn. 46 & 47: 145–153.

    Article  Google Scholar 

  • Richards, P. J., Quinn, A. D., and Parker, S. (2002). A 6m cube in an atmospheric boundary layer flow. Part2. Computational solutions. Wind and Structures 5: 177–192.

    Google Scholar 

  • Richards, P. J., Hoxey, R. P., Connell, B. D., and Lander, D. P. (2005). Wind tunnel modelling of the Silsoe cube. In Náprstek, J., and Pirner, M., eds., Proceedings of the 4th European-African Conference on Wind Engineering, Prague, Paper #313.

    Google Scholar 

  • Roache, P. J. (1997). Quantification of Uncertainty in Computational Fluid Dynamics. Annu. Rev. Fluid Mech. 29: 123–160.

    Article  MathSciNet  Google Scholar 

  • Rodi, W. (1991). Experience using two-layer models combining the k-ε model with a one-equation model near the wall. AIAA Paper 91-0609.

    Google Scholar 

  • Rotta, J. (1951). Statistische Theorie nichthomogener Turbulenz. 1. Mitteilung. Zeitschrift für Physik 129: 547–572.

    Article  MATH  MathSciNet  Google Scholar 

  • Roy, C. J. (2005). Review of code and solution verification procedures for computational simulation. J. Comp. Phys. 205: 131–156.

    Article  MATH  Google Scholar 

  • Sagaut, P. (2002). Large Eddy Simulation for Incompressible Flows, 2nd edition. Berlin: Springer Verlag.

    MATH  Google Scholar 

  • Scaperdas, A. and Gilham, S. (2004). Thematic Area 4: Best practice advice for civil construction and HVAC. The QNET-CFD Network Newsletter 2: 28–33.

    Google Scholar 

  • Schumann, U. (1975). Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18: 376–404.

    Article  MATH  MathSciNet  Google Scholar 

  • Schumann, U. (1977). Realizability of Reynolds-stress turbulence models. Phys. Fluids 20: 721–725.

    Article  MATH  Google Scholar 

  • Shih, T.-H., Liou, W.W., Shabbir, A., Yang, Z. and Zhu, J. (1995). A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows — Model Development and Validation. Computers & Fluids 24: 227–238.

    Article  MATH  Google Scholar 

  • Simiu, E., and Scanlan, R. H. (1996). Wind Effects on Structures, 3rd edition. New York: Wiley.

    Google Scholar 

  • Smagorinsky, J. (1963). General circulation experiments with the primitive equations. I: The basic experiment. Month. Weath. Rev. 91:99–165.

    Article  Google Scholar 

  • Spalart, P. R., and Allmaras, S. R. (1994). A one-equation turbulence model for aerodynamic flows. La Rech. Aérospatiale 1:5–21.

    Google Scholar 

  • Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. Kh., and Travin, A. (2006). A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid. Dyn. 20: 181–195.

    Article  MATH  Google Scholar 

  • Speziale, C. G., Sarkar, S., and Gatski, T. B. (1991). Modeling the pressure-strain correlation of turbulence: an invariant dynamical systems approach. J. Fluid. Mech. 227: 245–272.

    Article  MATH  Google Scholar 

  • Stathopoulos, T. (1997). Computational wind engineering: Past achievements and future challenges. J. Wind Eng. Ind. Aerodyn. 67&68: 509–532.

    Article  Google Scholar 

  • Stathopoulos, T. (2002). The numerical wind tunnel for industrial aerodynamics: Real or virtual in the new millenium. Wind and Structures 5: 193–208.

    Google Scholar 

  • Tamura, T., Nozawa, K., and Kondo, K. (2006). AIJ guide for numerical prediction of wind loads on buildings. In Proceedings of the Fourth International Symposium on Computational Wind Engineering, 161–164.

    Google Scholar 

  • Tominaga, Y., Mochida, A., Shirasawa, T., Yoshie, R., Kataoka, H., Harimot, K. and Nozu, T. (2004). Cross Comparisons of CFD Results of Wind Environment at Pedestrian Level around a High-rise Building and within a Building Complex. Journal of Asian Architecture and Building Engineering 3.

    Google Scholar 

  • Tsuchiya, M., Murakami, S., Mochida, A., Kondo, K., and Ishida, Y. (1997). Development of a new k-ε model for flow and pressure fields around bluff bodies. J. Wind Eng. Ind. Aerodyn. 67&68: 169–182.

    Article  Google Scholar 

  • VDI (2005). Environmental meteorology — Prognostic micro-scale wind field models — Evaluation for flow around buildings and obstacles. VDI Guideline 3783, Part 9. Berlin: Beuth Verlag.

    Google Scholar 

  • Wright, N.G., and Easom, G.J. (1999). Comparsion of several computational turbulence models with fullscale measurements of flow around a building. Wind and Structures 2: 305–323.

    Google Scholar 

  • Wright, N.G. and Easom, G.J. (2003). Non-linear k-ε turbulence model results for flow over a building at full scale. Applied Mathematical Modelling 27: 1013–1033.

    Article  MATH  Google Scholar 

  • Yakhot, V. and Orzsag, S.A. (1986). Renormalization group analysis of turbulence: I. Basic theory. Journal of Scientific Computing 1: 1–51.

    Article  Google Scholar 

  • Yoshie, R., Mochida, A., Tominaga, Y., Kataoka, H., Harimoto, K., Nozu, T., and Shirasawa, T. (2005). Cooperative project for CFD prediction of pedestrian wind environment in the Architectural Institute of Japan. In Náprstek, J., and Pirner, M., eds., Proceedings of the 4th European-African Conference on Wind Engineering, Prague, Paper #292.

    Google Scholar 

  • Zhang, H., Faghri, M., and White, F. M. (1996). A new low-Reynolds-number k-ε model for turbulent flow over smooth and rough surfaces. ASME Journal of Fluids Engineering 118: 255–259.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 CISM,Udine

About this chapter

Cite this chapter

Franke, J. (2007). Introduction to the Prediction of Wind Loads on Buildings by Computational Wind Engineering (CWE). In: Stathopoulos, T., Baniotopoulos, C.C. (eds) Wind Effects on Buildings and Design of Wind-Sensitive Structures. CISM International Centre for Mechanical Sciences, vol 493. Springer, Vienna. https://doi.org/10.1007/978-3-211-73076-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-73076-8_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-73075-1

  • Online ISBN: 978-3-211-73076-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics