Skip to main content

Synergistic terminal motor end-to-side nerve graft repair: investigation in a non-human primate model

  • Conference paper

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 100))

Abstract

End-to-side nerve repair has re-emerged in the literature in recent years but clinical applications for this technique are not yet fully defined and clinical reports are rare and controversial. Hypothetically, there might be useful functional results performing peripheral end-to-side nerve graft repair using synergistic terminal branches with defined motor function. An end-to-side nerve graft repair bridging from the terminal motor branch of deep branch of the ulnar nerve to the thenar motor branch of the median nerve was performed in non-human primates.

The results in this non-human primate model demonstrate the efficacy of end-to-side nerve graft repair at the level of peripheral terminal motor branches. End-to-side neurorrhaphy may present a viable alternative in conditions of unsuitable end-to-end coaptation and inappropriate nerve grafting procedures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguayo AJ, Attiwell M, Trecarten J, Perkins S, Bray GM (1977) Abnormal myelination in transplanted Trembler mouse Schwann cells. Nature 265: 73–75

    Article  PubMed  CAS  Google Scholar 

  2. Angelov DN, Gunkel A, Stennert E, Neiss WF (1993) Recovery of original nerve supply after hypoglossal-facial anastomosis causes permanent motor hyperinnervation of the whisker-pad muscles in the rat. J Comp Neurol 338: 214–224

    Article  PubMed  CAS  Google Scholar 

  3. Angelov DN, Neiss WF, Gunkel M et al (1997) Nimodipineccelerated hypoglossal sprouting prevents the postoperative hyperinnervation of target muscle after hypoglossal-facial anastomosis in the rat. Restor Neurol Neurosci 11: 109–121

    CAS  Google Scholar 

  4. Angelov DN, Neiss WF, Streppel M, Andermahr J, Mader K, Stennert E (1996) Nimodipine accelerates axonal sprouting after surgical repair of rat facial nerve. J Neurosci 16: 1041–1048

    PubMed  CAS  Google Scholar 

  5. Angelov DN, Skouras E, Guntinas-Lichius O et al (1999) Contralateral trigeminal nerve lesion reduces polyneuronal muscle innervation after facial nerve repair in rats. Eur J Neurosci 11: 1369–1378

    Article  PubMed  CAS  Google Scholar 

  6. Brown MC, Holland RL, Hopkins WG (1981) Motor nerve sprouting. Annu Rev Neurosci 4: 17–42

    Article  PubMed  CAS  Google Scholar 

  7. Brushart TM, Gerber J, Kessens P, Chen YG, Royall RM (1998) Contributions of pathway and neuron to preferential motor reinnervation. J Neurosci 18: 8674–8681

    PubMed  CAS  Google Scholar 

  8. Brushart TM (1993) Motor axons preferentially reinnervate motor pathways. J Neurosci 13: 2730–2738

    PubMed  CAS  Google Scholar 

  9. Bunge RP (1993) Expanding roles for the Schwann cell: ensheathment, myelination, trophism and regeneration. Curr Opin Neurobiol 3: 805–809

    Article  PubMed  CAS  Google Scholar 

  10. Carmignoto G, Finesso M, Siliprandi R, Gorio A (1983) Muscle reinnervation — I. Restoration of transmitter release mechanisms. Neuroscience 8: 393–401

    Article  PubMed  CAS  Google Scholar 

  11. Castonguay A, Robitaille R (2001) Differential regulation of transmitter release by presynaptic and glial Ca2+ internal stores at the neuromuscular synapse. J Neurosci 21: 1911–1922

    PubMed  CAS  Google Scholar 

  12. Chen YG, Brushart TM (1998) The effect of denervated muscle and Schwann cells on axon collateral sprouting. J Hand Surg [Am] 23: 1025–1033

    Article  CAS  Google Scholar 

  13. Dohm S, Streppel M, Guntinas-Lichius O et al (2000) Local application of extracellular matrix proteins fails to reduce the number of axonal branches after varying reconstructive surgery on rat facial nerve. Restor Neurol Neurosci 16: 117–126

    PubMed  CAS  Google Scholar 

  14. Fu SY, Gordon T (1997) The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol 14: 67–116

    Article  PubMed  CAS  Google Scholar 

  15. Gruart A, Gunkel A, Neiss WF, Angelov DN, Stennert E, Delgado-Garcia JM (1996) Changes in eye blink responses following hypoglossal-facial anastomosis in the cat: evidence of adult mammal motoneuron unadaptability to new motor tasks. Neuroscience 73: 233–247

    Article  PubMed  CAS  Google Scholar 

  16. Guntinas-Lichius O, Wewetzer K, Tomov TL et al (2002) Transplantation of olfactory mucosa minimizes axonal branching and promotes the recovery of vibrissae motor performance after facial nerve repair in rats. J Neurosci 22: 7121–7131

    PubMed  CAS  Google Scholar 

  17. Harness D, Sekeles E (1971) The double anastomotic innervation of thenar muscles. J Anat 109: 461–466

    PubMed  CAS  Google Scholar 

  18. Hennig R, Dietrichs E (1994) Transient reinnervation of antagonistic muscles by the same motoneuron. Exp Neurol 130: 331–336

    Article  PubMed  CAS  Google Scholar 

  19. Ide C (1996) Peripheral nerve regeneration. Neurosci Res 25: 101–121

    PubMed  CAS  Google Scholar 

  20. IJkema-Paassen J, Meek MF, Gramsbergen A (2002) Reinnervation of muscles after transection of the sciatic nerve in adult rats. Muscle Nerve 25: 891–897

    Article  PubMed  Google Scholar 

  21. Ko CP, Chen L (1996) Synaptic remodeling revealed by repeated in vivo observations and electron microscopy of identified frog neuromuscular junctions. J Neurosci 16: 1780–1790

    PubMed  CAS  Google Scholar 

  22. Koirala S, Qiang H, Ko CP (2000) Reciprocal interactions between perisynaptic Schwann cells and regenerating nerve terminals at the frog neuromuscular junction. J Neurobiol 44: 343–360

    Article  PubMed  CAS  Google Scholar 

  23. Love FM, Son YJ, Thompson WJ (2003) Activity alters muscle reinnervation and terminal sprouting by reducing the number of Schwann cell pathways that grow to link synaptic sites. J Neurobiol 54: 566–576

    Article  PubMed  Google Scholar 

  24. Love FM, Thompson WJ (1999) Glial cells promote muscle reinnervation by responding to activity-dependent postsynaptic signals. J Neurosci 19: 10390–10396

    PubMed  CAS  Google Scholar 

  25. Lubischer JL, Thompson WJ (1999) Neonatal partial denervation results in nodal but not terminal sprouting and a decrease in efficacy of remaining neuromuscular junctions in rat soleus muscle. J Neurosci 19: 8931–8944

    PubMed  CAS  Google Scholar 

  26. Lundborg G, Zhao Q, Kanje M, Danielsen N, Kerns JM (1994) Can sensory and motor collateral sprouting be induced from intact peripheral nerve by end-to-side anastomosis? J Hand Surg [Br] 19: 277–282

    Article  CAS  Google Scholar 

  27. Millesi H (1985) Peripheral nerve repair: terminology, questions, and facts. J Reconstr Microsurg 2: 21–31

    Article  PubMed  CAS  Google Scholar 

  28. Pollard JD, McLeod JG (1980) Nerve grafts in the Trembler mouse. An electrophysiological and histological study. J Neurol Sci 46: 373–383

    Article  PubMed  CAS  Google Scholar 

  29. Reynolds ML, Woolf CJ (1992) Terminal Schwann cells elaborate extensive processes following denervation of the motor endplate. J Neurocytol 21: 50–66

    Article  PubMed  CAS  Google Scholar 

  30. Robitaille R (1998) Modulation of synaptic efficacy and synaptic depression by glial cells at the frog neuromuscular junction. Neuron 21: 847–855

    Article  PubMed  CAS  Google Scholar 

  31. Sanes JN, Suner S, Donoghue JP (1990) Dynamic organization of primary motor cortex output to target muscles in adult rats. I. Longterm patterns of reorganization following motor or mixed peripheral nerve lesions. Exp Brain Res 79: 479–491

    Article  PubMed  CAS  Google Scholar 

  32. Shawe GD (1955) On the number of branches formed by regenerating nerve-fibres. Br J Surg 42: 474–488

    Article  PubMed  CAS  Google Scholar 

  33. Son YJ, Thompson WJ (1995) Nerve sprouting in muscle is induced and guided by processes extended by Schwann cells. Neuron 14: 133–141

    Article  PubMed  CAS  Google Scholar 

  34. Son YJ, Thompson WJ (1995) Schwann cell processes guide regeneration of peripheral axons. Neuron 14: 125–132

    Article  PubMed  CAS  Google Scholar 

  35. Streppel M, Angelov DN, Guntinas-Lichius O et al (1998) Slow axonal regrowth but extreme hyperinnervation of target muscle after suture of the facial nerve in aged rats. Neurobiol Aging 19: 83–88

    Article  PubMed  CAS  Google Scholar 

  36. Streppel M, Azzolin N, Dohm S et al (2002) Focal application of neutralizing antibodies to soluble neurotrophic factors reduces collateral axonal branching after peripheral nerve lesion. Eur J Neurosci 15: 1327–1342

    Article  PubMed  CAS  Google Scholar 

  37. Sumner AJ (1990) Aberrant reinnervation. Muscle Nerve 13: 801–803

    Article  PubMed  CAS  Google Scholar 

  38. Terenghi G (1995) Peripheral nerve injury and regeneration. Histol Histopathol 10: 709–718

    PubMed  CAS  Google Scholar 

  39. Valero-Cabre A, Navarro X (2002) Functional impact of axonal misdirection after peripheral nerve injuries followed by graft or tube repair. J Neurotrauma 19: 1475–1485

    Article  PubMed  Google Scholar 

  40. Valero-Cabre A, Tsironis K, Skouras E, Perego G, Navarro X, Neiss WF (2001) Superior muscle reinnervation after autologous nerve graft or poly-L-lactide-epsilon-caprolactone (PLC) tube implantation in comparison to silicone tube repair. J Neurosci Res 63: 214–223

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this paper

Cite this paper

Schmidhammer, R., Redl, H., Hopf, R., van der Nest, D.G., Millesi, H. (2007). Synergistic terminal motor end-to-side nerve graft repair: investigation in a non-human primate model. In: Millesi, H., Schmidhammer, R. (eds) How to Improve the Results of Peripheral Nerve Surgery. Acta Neurochirurgica Supplementum, vol 100. Springer, Vienna. https://doi.org/10.1007/978-3-211-72958-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-72958-8_21

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-72955-7

  • Online ISBN: 978-3-211-72958-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics