Skip to main content

The potential of electrical stimulation to promote functional recovery after peripheral nerve injury — comparisons between rats and humans

  • Conference paper
How to Improve the Results of Peripheral Nerve Surgery

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 100))

Abstract

The declining capacity for injured peripheral nerves to regenerate their axons with time and distance is accounted for, at least in part, by the chronic axotomy of the neurons and Schwann cell denervation prior to target reinnervation. A largely unrecognized site of delay is the surgical suture site where, in rats, 4 weeks is required for all neurons to regenerate their axons across the site. Low frequency stimulation for just 1 h after surgery accelerates this axon crossing in association with upregulation of neurotrophic factors in the neurons. We translated these findings to human patients by examining the number of reinnervated motor units in the median nerve-innervated thenar muscles before and after carpel tunnel release surgery in a randomized controlled trial. Motor unit number estimates (MUNE) in patients with moderate and severe carpal tunnel syndrome were significantly lower than normal. This number increased significantly by 6–8 months after surgery and reached normal values by 12 months in contrast to a non-significant increase in the control unstimulated group. Tests including the Purdue Pegboard Test verified the more rapid functional recovery after stimulation. The data indicate a feasible strategy to promote axonal regeneration in humans that has the potential to improve functional outcomes, especially in combination with strategies to sustain the regenerative capacity of neurons and the support of Schwann cells over distance and time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitken JT, Sharman M, Young JZ (1947) Maturation of peripheral nerve fibres with various peripheral connections. J Anat 81: 1–22

    Article  PubMed  CAS  Google Scholar 

  2. Al-Amood WS, Lewis DM, Schmalbruch H (1991) Effects of chronic electrical stimulation on contractile properties of long-term denervated rat skeletal muscle. J Physiol 441: 243–256

    PubMed  CAS  Google Scholar 

  3. Al-Majed AA, Brushart TM, Gordon T (2000) Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur J Neurosci 12: 4381–4390

    Article  PubMed  CAS  Google Scholar 

  4. Al-Majed AA, Neumann CM, Brushart TM, Gordon T (2000) Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci 20: 2602–2608

    PubMed  CAS  Google Scholar 

  5. Anzil AP, Wernig A (1989) Muscle fibre loss and reinnervation after long-term denervation. J Neurocytol 18: 833–845

    Article  PubMed  CAS  Google Scholar 

  6. Atanasoski S, Scherer SS, Sirkowski E, Leone D, Garratt AN, Birchmeier C, Suter U (2006) ErbB2 signaling in Schwann cells is mostly dispensable for maintenance of myelinated peripheral nerves and proliferation of adult Schwann cells after injury. J Neurosci 26: 2124–2131

    Article  PubMed  CAS  Google Scholar 

  7. Bisby MA, Pollock B (1983) Increased regeneration rate in peripheral-nerve axons following double lesions — Enhancement of the conditioning lesion phenomenon. J Neurobiol 14: 467–472

    Article  PubMed  CAS  Google Scholar 

  8. Bisby MA, Tetzlaff W (1992) Changes in cytoskeletal protein synthesis following axon injury and during axon regeneration. Mol Neurobiol 6: 107–123

    Article  PubMed  CAS  Google Scholar 

  9. Boyd JG, Gordon T (2002) A dose-dependent facilitation and inhibition of peripheral nerve regeneration by brain-derived neurotrophic factor. Eur J Neurosci 15: 613–626

    Article  PubMed  CAS  Google Scholar 

  10. Boyd JG, Gordon T (2003) Glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor sustain the axonal regeneration of chronically axotomized motoneurons in vivo. Exp Neurol 183: 610–619

    Article  PubMed  CAS  Google Scholar 

  11. Boyd JG, Gordon T (2003) Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol Neurobiol 27: 277–324

    Article  PubMed  CAS  Google Scholar 

  12. Brushart TM, Mesulam MM (1980) Alteration in connections between muscle and anterior horn motoneurons after peripheral nerve repair. Science 208: 603–605

    Article  PubMed  CAS  Google Scholar 

  13. Brushart TM, Hoffman PN, Royall RM, Murinson BB, Witzel C, Gordon T (2002) Electrical stimulation promotes motoneuron regeneration without increasing its speed or conditioning the neuron. J Neurosci 22: 6631–6638

    PubMed  CAS  Google Scholar 

  14. Brushart TM, Jari R, Verge V, Rohde C, Gordon T (2005) Electrical stimulation restores the specificity of sensory axon regeneration. Exp Neurol 194: 221–229

    Article  PubMed  Google Scholar 

  15. Carraro U, Rossini K, Mayr W, Kern H (2005) Muscle fiber regeneration in human permanent lower motoneuron denervation: relevance to safety and effectiveness of FES-training, which induces muscle recovery in SCI subjects. Artif Organs 29: 187–191

    Article  PubMed  Google Scholar 

  16. Carroll SL, Miller ML, Frohnert PW, Kim SS, Corbett JA (1997) Expression of neuregulins and their putative receptors, ErbB2 and ErbB3, is induced during Wallerian degeneration. J Neurosci 17: 1642–1659

    PubMed  CAS  Google Scholar 

  17. Cheng L, Esch FS, Marchionni MA, Mudge AW (1998) Control of Schwann cell survival and proliferation: autocrine factors and neuregulins. Mol Cell Neurosci 12: 141–156

    Article  PubMed  CAS  Google Scholar 

  18. Choi D, Raisman G (2002) Somatotopic organization of the facial nucleus is disrupted after lesioning and regeneration of the facial nerve: the histological representation of synkinesis. Neurosurg 50: 355–362

    Article  Google Scholar 

  19. Clemence A, Mirsky R, Jessen KR (1989) Non-myelin-forming Schwann cells proliferate rapidly during Wallerian degeneration in the rat sciatic nerve. J Neurocytol 18: 185–192

    Article  PubMed  CAS  Google Scholar 

  20. Dedkov EI, Kostrominova TY, Borisov AB, Carlson BM (2002) Survival of Schwann cells in chronically denervated skeletal muscles. Acta Neuropathol (Berl) 103: 565–574

    Article  CAS  Google Scholar 

  21. Doherty TJ, Brown WF (1993) The estimated numbers and relative sizes of thenar motor units as selected by multiple point stimulation in young and older adults. Muscle Nerve 16: 355–366

    Article  PubMed  CAS  Google Scholar 

  22. Doherty T, Simmons Z, O’Connell B, Felice KJ, Conwit R, Chan KM, Komori T, Brown T, Stashuk DW, Brown WF (1995) Methods for estimating the numbers of motor units in human muscles. J Clin Neurophysiol 12: 565–584

    Article  PubMed  CAS  Google Scholar 

  23. Eberhardt KA, Irintchev A, Al-Majed AA, Simova O, Brushart TM, Gordon T, Schachner M (2006) BDNF/TrkB signaling regulates HNK-1 carbohydrate expression in regenerating motor nerves and promotes functional recovery after peripheral nerve repair. Exp Neurol 198: 500–510

    Article  PubMed  CAS  Google Scholar 

  24. Eberstein A, Pachter BR (1986) The effect of electrical stimulation on reinnervation of rat muscle: contractile properties and endplate morhpometry. Brain Res 384: 304–310

    Article  PubMed  CAS  Google Scholar 

  25. Fenrich K, Gordon T (2004) Canadian association of neuroscience review: axonal regeneration in the peripheral and central nervous systems — current issues and advances. Can J Neurol Sci 31: 142–156

    PubMed  Google Scholar 

  26. Fu SY, Gordon T (1995) Contributing factors to poor functional recovery after delayed nerve repair: prolonged denervation. J Neurosci 15: 3886–3895

    PubMed  CAS  Google Scholar 

  27. Fu SY, Gordon T (1997) The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol 14: 67–116

    Article  PubMed  CAS  Google Scholar 

  28. Gentili F, Hudson AR, Midha R (1996) Peripheral nerve injuries: types, causes, and grading. In: Wilkins RH, Rengachary SS (eds) Neurosurgery, McGraw-Hill, pp 3105–3114

    Google Scholar 

  29. Giannini C, Dyck PJ (1990) The fate of Schwann cell basement membranes in permanently transected nerves. J Neuropathol Exp Neurol 49: 550–563

    PubMed  CAS  Google Scholar 

  30. Gillespie MJ, Gordon T, Murphy PR (1986) Reinnervation of the lateral gastrocnemius and soleus muscles in the rat by their common nerve. J Physiol 372: 485–500

    PubMed  CAS  Google Scholar 

  31. Gordon T (1994) Mechanisms for functional recovery of the larynx after surgical repair of injured nerves. J Voice 8: 70–78

    Article  PubMed  CAS  Google Scholar 

  32. Gordon T, Fu SY (1997) Long-term response to nerve injury. Adv Neurol 72: 185–199

    PubMed  CAS  Google Scholar 

  33. Gordon T, Boyd JG, Sulaiman OAR (2005) Experimental approaches to promote functional recovery after severe peripheral nerve injuries. Eur Surgery 37: 193–203

    Article  Google Scholar 

  34. Gordon T, Sulaiman OAR, Boyd JG (2003) Experimental strategies to promote functional recovery after peripheral nerve injuries. J Peripher Nerv Syst 8: 236–250

    Article  PubMed  Google Scholar 

  35. Gutmann E, Guttmann L, Medawar PB, Young JZ (1942) The rate of regeneration of nerve. J Exp Biol 19: 14–44

    Google Scholar 

  36. Hall SM (1999) The biology of chronically denervated Schwann cells. Ann NY Acad Sci 883: 215–233

    Article  PubMed  CAS  Google Scholar 

  37. Hoke A, Gordon T, Zochodne DW, Sulaiman OAR (2002) A decline in glial cell-line-derived neurotrophic factor expression is associated with impaired regeneration after long-term Schwann cell denervation. Exp Neurol 173: 77–85

    Article  PubMed  CAS  Google Scholar 

  38. Kuffler DP (1986) Accurate reinnervation of motor end plates after disruption of sheath cells and muscle fibers. J Comp Neurol 250: 228–235

    Article  PubMed  CAS  Google Scholar 

  39. Li H, Terenghi G, Hall SM (1997) Effects of delayed re-innervation on the expression of c-erbB receptors by chronically denervated rat Schwann cells in vivo. Glia 20: 333–347

    Article  PubMed  CAS  Google Scholar 

  40. Lundborg G (1988) Nerve injury and repair. Churchill Livingstone, Edinburgh

    Google Scholar 

  41. Lundborg G (2000) Brain plasticity and hand surgery: an overview. J Hand Surg [Br] 25: 242–252

    Article  CAS  Google Scholar 

  42. Lundborg G (2003) Richard P. Bunge memorial lecture. Nerve injury and repair — a challenge to the plastic brain. J Peripher Nerv Syst 8: 209–226

    Article  PubMed  Google Scholar 

  43. Mackinnon SE, Dellon AL, O’Brien JP (1991) Changes in nerve fiber numbers distal to a nerve repair in the rat sciatic nerve model. Muscle Nerve 14: 1116–1122

    Article  PubMed  CAS  Google Scholar 

  44. McComas AJ, Fawcett PR, Campbell MJ, Sica RE (1971) Electrophysiological estimation of the number of motor units within a human muscle. J Neurol Neurosurg Psychiatry 34: 121–131

    PubMed  CAS  Google Scholar 

  45. McQuarrie IG (1986) Structural protein-transport in elongating motor axons after sciatic-nerve crush — Effect of a conditioning lesion. Neurochem Pathol 5: 153–164

    PubMed  CAS  Google Scholar 

  46. Mejat A, Ramond F, Bassel-Duby R, Khochbin S, Olson EN, Schaeffer L (2005) Histone deacetylase 9 couples neuronal activity to muscle chromatin acetylation and gene expression. Nat Neurosci 8: 313–321

    Article  PubMed  CAS  Google Scholar 

  47. Midha R, Munro CA, Chan S, Nitising A, Xu QG, Gordon T (2005) Regeneration into protected and chronically denervated peripheral nerve stumps. Neurosurg 57: 1289–1299

    Article  Google Scholar 

  48. Mokrusch T, Engelhardt A, Eichhorn KF, Prischenk G, Prischenk H, Sack G, Neundorfer B (1990) Effects of long-impulse electrical stimulation on atrophy and fibre type composition of chronically denervated fast rabbit muscle. J Neurol 237: 29–34

    Article  PubMed  CAS  Google Scholar 

  49. Nave KA, Schwab MH (2005) Glial cells under remote control. Nat Neurosci 8: 1420–1422

    Article  PubMed  CAS  Google Scholar 

  50. Nemoto K, Williams HB, Nemoto K, Lough J, Chiu RC (1988) The effects of electrical stimulation on denervated muscle using implantable electrodes. J Reconstr Microsurg 4: 251–255, 257

    Article  PubMed  CAS  Google Scholar 

  51. Nix WA, Dahm M (1987) The effect of isometric short-term electrical stimulation on denervated muscle. Muscle Nerve 10: 136–143

    Article  PubMed  CAS  Google Scholar 

  52. Nix WA, Hopf HC (1983) Electrical stimulation of regenerating nerve and its effect on motor recovery. Brain Res 272: 21–25

    Article  PubMed  CAS  Google Scholar 

  53. Padua L, Lo Monaco M, Monaco M, Padua R, Gregori B, Tonali P (1997) Neurophysiological classification of carpal tunnel syndrome: assessment of 600 symptomatic hands. Ital J Neurol Sci 18: 145–150

    Article  PubMed  CAS  Google Scholar 

  54. Ramon Y Cajal S (1991) Cajal’s degeneration and regeneration of the nervous system

    Google Scholar 

  55. Sanes IR, Lichtman IW (2001) Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci 2: 791–805

    Article  PubMed  CAS  Google Scholar 

  56. Schmidt CE, Shastri VR, Vacanti JP, Langer R (1997) Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci USA 94: 8948–8953

    Article  PubMed  CAS  Google Scholar 

  57. Sulaiman OAR, Gordon T (2000) Effects of short-and long-term Schwann cell denervation on peripheral nerve regeneration, myelination, and size. Glia 32: 234–246

    Article  PubMed  CAS  Google Scholar 

  58. Sulaiman OAR, Gordon T (2002) Transforming growth factor-beta and forskolin attenuate the adverse effects of long-term Schwann cell denervation on peripheral nerve regeneration in vivo. Glia 37: 206–218

    Article  PubMed  Google Scholar 

  59. Sulaiman OAR, Gordon T (2003) TGF-beta reverses the deleterious effect of long-term Schwann cell denervation on nerve regeneration by inducing erbB3 receptor expression. Glia 24Suppl 2

    Google Scholar 

  60. Sulaiman OAR, Boyd JG, Gordon T (2005) Axonal regeneration in the peripheral system of mammals. In: Kettenman H, Ransom BR (eds) Neuroglia 2nd edn. Oxford University Press, Chapter 36, pp 454–466

    Google Scholar 

  61. Sulaiman OA, Voda J, Gold BG, Gordon T (2002) FK506 increases peripheral nerve regeneration after chronic axotomy but not after chronic schwann cell denervation. Exp Neurol 175: 127–137

    Article  PubMed  CAS  Google Scholar 

  62. Sunderland S (1947) Rate of regeneration in human peripheral nerves: analysis of interval between injury and onset of recovery. Arch Neurol Psychiat 58(3): 251–295

    CAS  PubMed  Google Scholar 

  63. Sunderland S (1978) Nerve and nerve injuries. Livingstone, Edinburgh

    Google Scholar 

  64. Sunderland S (1991) Nerve injuries and their repair. Churchill Livingstone, Edinburgh

    Google Scholar 

  65. Tetzlaff W, Bisby MA, Kreutzberg GW (1988) Changes in cytoskeletal proteins in the rat facial nucleus following axotomy. J Neurosci 8: 3181–3189

    PubMed  CAS  Google Scholar 

  66. Tetzlaff W, Leonard C, Krekoski CA, Parhad IM, Bisby MA (1996) Reductions in motoneuronal neurofilament synthesis by successive axotomies: a possible explanation for the conditioning lesion effect on axon regeneration. Exp Neurol 139: 95–106

    Article  PubMed  CAS  Google Scholar 

  67. Thomas CK, Stein RB, Gordon T, Lee RG, Elleker MG (1987) Patterns of reinnervation and motor unit recruitment in human hand muscles after complete ulnar and median nerve section and resuture. J Neurol Neurosurg Psychiatry 50: 259–268

    PubMed  CAS  Google Scholar 

  68. Verdu E, Navarro X (1997) Comparison of immunohistochemical and functional reinnervation of skin and muscle after peripheral nerve injury. Exp Neurol 146: 187–198

    Article  PubMed  CAS  Google Scholar 

  69. Williams HB (1996) The value of continuous electrical muscle stimulation using a completely implantable system in the preservation of muscle function following motor nerve injury and repair: an experimental study. Microsurgery 17: 589–596

    Article  PubMed  CAS  Google Scholar 

  70. Witzel C, Rohde C, Brushart TM (2005) Pathway sampling by regenerating peripheral axons. J Comp Neurol 485: 183–190

    Article  PubMed  Google Scholar 

  71. Wood PM, Cuervo EF, Bunge RP, Gordon T (1998) Functional capacities of long-term denervated Schwann cells. Soc Neurosci 24: 690.8

    Google Scholar 

  72. You S, Petrov T, Chung PH, Gordon T (1997) The expression of the low affinity nerve growth factor receptor in long-term denervated Schwann cells. Glia 20: 87–100

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this paper

Cite this paper

Gordon, T., Brushart, T.M., Amirjani, N., Chan, K.M. (2007). The potential of electrical stimulation to promote functional recovery after peripheral nerve injury — comparisons between rats and humans. In: Millesi, H., Schmidhammer, R. (eds) How to Improve the Results of Peripheral Nerve Surgery. Acta Neurochirurgica Supplementum, vol 100. Springer, Vienna. https://doi.org/10.1007/978-3-211-72958-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-72958-8_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-72955-7

  • Online ISBN: 978-3-211-72958-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics