Skip to main content
  • 1795 Accesses

Abstract

In industrial environments, numerical simulation has become an indispensable tool for the development and optimization of especially front-end processes. In order to remain useful for future technology nodes, process simulation has to follow and partly even anticipate paradigm shifts of state-of-the-art processes and new materials for future nanoelectronic devices. Within this article, the author presents his personal view of unsolved and upcoming issues that have to be addressed and solved in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://www.larry.denenberg.com/predictions.html.

  2. http://www.itrs.net/reports.html.

  3. G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, pp. 114–117, 1965.

    Google Scholar 

  4. http://www.iisb.fraunhofer.de/en/arb-geb/upper.plus.htm.

  5. http://www.iisb.fraunhofer.de/en/arb_geb/sugert.htm.

  6. http://www.iisb.fraunhofer.de/en/arb-geb/frendtech.html.

  7. http://www.iisb.fraunhofer.de/en/arb_geb/atomics.htm.

  8. T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann, K. Johnson, C. Kenyon, J. Klaus, B. Mclntyre, K. Mistry, A. Murthy, J. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson, and M. Bohr, “A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors,” in Technical Digest of the 2003 International Electron Devices Meeting (IEDM), (Piscataway), pp. 978–980, IEEE, 2003.

    Google Scholar 

  9. M. E. Law, K. S. Jones, L. Radic, R. Crosby, M. Clark, K. Gable, and C. Ross, “Process modeling for advanced devices,” in Silicon Front-End Junction Formation-Physics and Technology (P. Pichler, A. Claverie, R. Lindsay, M. Orlowski, and W. Windl, eds.), vol. 810 of Mat. Res. Soc. Symp. Proc, pp. C3.1.1–C3.1.7, 2004.

    Google Scholar 

  10. Y. Todokoro and I. Teramoto, “The stress-enhanced diffusion of boron in silicon,” J. Appl. Phys., vol. 49, no. 6, pp. 3527–3529, 1978.

    Article  Google Scholar 

  11. K. Osada, Y. Zaitsu, S. Matsumoto, M. Yoshida, E. Arai, and T. Abe, “Effect of stress in the deposited silicon nitride films on boron diffusion of silicon,” J. Electrochem. Soc, vol. 142, no. 1, pp. 202–206, 1995.

    Article  Google Scholar 

  12. S. Mizuo, T. Kusaka, A. Shintani, M. Nanba, and H. Higuchi, “Effect of Si and SiO2 thermal nitridation on impurity diffusion and oxidation induced stacking fault size in Si,” J. Appl. Phys., vol. 54, no. 7, pp. 3860–3866, 1983.

    Article  Google Scholar 

  13. N. R. Zangenberg, J. Fage-Pedersen, J. Lundsgaard Hansen, and A. Nylandsted Larsen, “Boron diffusion in strained and relaxed Si1-x Gex,” in Diffusion in Materials DIMAT-2000 (Y. Limoge and J. L. Bocquet, eds.), vol. 194–199 of Defect and Diffusion Forum, pp. 703–708, 2001.

    Google Scholar 

  14. N. S. Bennett, A. J. Smith, C. S. Beer, L. O’Reilly, B. Colombeau, G. D. Dilliway, R. Harper, P. J. McNally, R. Gwilliam, N. E. B. Cowern, and B. J. Sealy, “Enhanced antimony activation for ultra-shallow junctions in strained silicon,” in Doping Engineering for Device Fabrication (B. J. Pawlak, S. B. Felch, K. S. Jones, and M. Hane, eds.), vol. 912 of Mat. Res. Soc. Symp. Proc, pp. 0912-C02–03, 2006.

    Google Scholar 

  15. F. C. Larché and J. W. Cahn, “The effect of self-stress on diffusion in solids,” Acta Metallurgica, vol. 30, pp. 1835–1845, 1982.

    Article  Google Scholar 

  16. B. J. Pawlak, R. Surdeanu, B. Colombeau, A. J. Smith, N. E. B. Cowern, R. Lindsay, W. Vandervorst, B. Brijs, O. Richard, and F. Cristiano, “Evidence on the mechanism of boron deactivation in Ge-preamorphized ultrashallow junctions,” Appl. Phys. Lett., vol. 84, no. 12, pp. 2055–2057, 2004.

    Article  Google Scholar 

  17. R. Pinacho, M. Jaraíz, H. J. Gossmann, G. H. Gilmer, J. L. Benton, and P. Werner, “The effect of carbon/self-interstitial clusters on carbon diffusion in silicon modeled by kinetic Monte Carlo simulations,” in Si Front-End Processing—Physics and Technology of Dopant-Defect Interactions II (A. Agarwal, L. Pelaz, H.-H. Vuong, P. Packan, and M. Kase, eds.), vol. 610 of Mat. Res. Soc Symp. Proc, pp. B7.2.1–B7.2.6, 2000.

    Google Scholar 

  18. M. Diebel, S. Chakravarthi, S. T. Dunham, C. F. Machala, S. Ekbote, and A. Jain, “Investigation and modeling of fluorine Co-implantation effects on dopant redistribution,” in CMOS Front-End Materials and Process Technology (T.-J. King, B. Yu, R. J. P. Lander, and S. Saito, eds.), vol. 765 of Mat. Res. Soc. Symp. Proc, pp. D6.15.1–D6.15.6, 2003.

    Google Scholar 

  19. G. Impellizzeri, S. Mirabella, F. Priolo, E. Napolitani, and A. Carnera, “Fluorine in preamorphized Si: Point defect engineering and control of dopant diffusion,” J. Appl. Phys., vol. 99, p. 103510, 2006.

    Article  Google Scholar 

  20. W. Lerch, S. Paul, J. Niess, S. McCoy, T. Selinger, J. Gelpey, F. Cristiano, F. Severac, M. Gavelle, S. Boninelli, P. Pichler, and D. Bolze, “Advanced activation of ultra-shallow junctions using flash-assisted RTP,” in Materials Science and Device Issues for Future Technologies (L. Pelaz and R. Duffy, eds.), vol. 124–125 of Materials Science and Engineering B, pp. 24–31, 2005.

    Google Scholar 

  21. P. Pichler, A. Burenkov, W. Lerch, J. Lorenz, S. Paul, J. Niess, Z. Nényei, J. Gelpey, S. McCoy, W. Windl, and L. F. Giles, “Process-induced diffusion phenomena in advanced CMOS technologies,” in Diffusion in Solids and Liquids (A. Öchsner and J. Grácio, eds.), vol. 258–260 of Defect and Diffusion Forum, pp. 510–521, 2006.

    Google Scholar 

  22. V. C. Venezia, T. E. Haynes, A. Agarwal, L. Pelaz, H.-J. Gossmann, D. C. Jacobson, and D. J. Eaglesham, “Mechanism for the reduction of interstitial supersaturations in MeV-implanted silicon,” Appl. Phys. Lett., vol. 74, no. 9, pp. 1299–1301, 1999.

    Article  Google Scholar 

  23. A. J. Smith, N. E. B. Cowern, B. Colombeau, R. Gwiiliam, B. J. Sealy, E. J. H. Collart, S. Gennaro, D. Giubertoni, M. Bersani, and M. Barozzi, “Junction stability of B doped layers in SOI formed with optimized vacancy engineering implants,” in 16 th International Conference on Ion Implantation Technology — IIT 2006 (K. J. Kirkby, R. M. Gwilliam, A. Smith, and D. Chivers, eds.), vol. 866 of AIP Conference Proceedings, pp. 84–87, 2006.

    Google Scholar 

  24. D. W. Donnelly, B. C. Covington, J. Grun, R. P. Fischer, M. Peckerar, and C. L. Felix, “Athermal annealing of low-energy boron implants in silicon,” Appl. Phys. Lett., vol. 78, no. 14, pp. 2000–2002, 2001.

    Article  Google Scholar 

  25. B. Lojek, “Athermal annealing of silicon implanted layer: Beyond the light,” in 12 th IEEE International Conference on Advanced Thermal Processing of Semiconductors RTP 2004 (J. Gelpey, B. Lojek, Z. Nenyei, and R. Singh, eds.), (Piscataway), pp. 53–60, IEEE, 2004.

    Google Scholar 

  26. F. A. Trumbore, “Solid solubilities of impurity elements in germanium and silicon,” Bell Syst. Techn. J., vol. 39, no. 1, pp. 205–233, 1960.

    Google Scholar 

  27. D. Beke, ed., Diffusion in Semiconductors, vol. III/33A of Landolt-Börnstein. Berlin: Springer-Verlag, 1998.

    Google Scholar 

  28. S. Uppal, A. F. W. Willoughby, J. M. Bonar, N. E. B. Cowern, T. Grasby, R. J. H. Morris, and M. G. Dowsett, “Diffusion of boron in germanium at 800–900°C,” J. Appl. Phys., vol. 96, no. 3, pp. 1376–1380, 2004.

    Article  Google Scholar 

  29. C. Claeys, T. Peaker, B. Svensson, and J. Vanhellemont, eds., Germanium Based Semiconductors from Materials to Devices, vol. 9 of Materials Science in Semiconductor Processing, 2006.

    Google Scholar 

  30. P. Pichler, Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon. Wien: Springer-Verlag, 2004.

    Google Scholar 

  31. A. Claverie, B. Colobeau, B. De Mauduit, C. Bonafos, X. Hebras, G. Ben Assayag, and F. Cristiano, “Extended defects in shallow implants,” Appl. Phys. A, vol. 76, pp. 1025–1033, 2003.

    Article  Google Scholar 

  32. W. C. Dunlap, Jr., “Diffusion of impurities in germanium,” Phys. Rev., vol. 94, no. 6, pp. 1531–1540, 1954.

    Article  Google Scholar 

  33. W. Meer and D. Pommerrenig, “Diffusion von aluminium und bor in germanium,” Z. angew. Phys., vol. 23, no. 6, pp. 369–372, 1967.

    Google Scholar 

  34. E. Vainonen-Ahlgren, T. Ahlgren, J. Likonen, S. Lehto, J. Keinonen, W. Li, and J. Haapamaa, “Identification of vacancy charge states in diffusion of arsenic in germanium,” Appl. Phys. Lett., vol. 77, no. 5, pp. 690–692, 2000.

    Article  Google Scholar 

  35. H. Bracht and S. Brotzmann, “Atomic transport in germanium and the mechanism of arsenic diffusion,” in Germanium Based Semiconductors from Materials to Devices (C. Claeys, T. Peaker, B. Svensson, and J. Vanhellemont, eds.), vol. 9 of Materials Science in Semiconductor Processing, pp. 471–476, 2006.

    Google Scholar 

  36. S. Mitha, M. J. Aziz, D. Schiferl, and D. B. Poker, “Effect of pressure on arsenic diffusion in germanium: Evidence against simple vacancy mechanism,” in Diffusion in Materials (H. Mehrer, C. Herzig, N. A. Stolwijk, and H. Bracht, eds.), vol. 143–147 of Defect and Diffusion Forum, pp. 1041–1046, 1997.

    Google Scholar 

  37. D. P. Hickey, Z. L. Bryan, K. S. Jones, R. G. Elliman, and E. E. Haller, “Regrowth-related defect formation and evolution in 1 MeV amorphized (001) Ge,” Appl. Phys. Lett., vol. 90, p. 132114, 2007.

    Article  Google Scholar 

  38. A. Satta, G. Nicholas, E. Simoen, M. Houssa, A. Dimoulas, B. De Jaeger, J. Van Steenbergen, and M. Meuris, “Impact of germanium surface passivation on the leakage current of shallow planar p-n junctions,” in T. Peaker, B. Svensson, and J. Vanhellemont, eds., Germanium Based Semiconductors from Materials to Devices, vol. 9 of Materials Science in Semiconductor Processing Claeys et al. [29], pp. 716–720.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Wien

About this paper

Cite this paper

Pichler, P. (2007). Upcoming Challenges for Process Modeling. In: Grasser, T., Selberherr, S. (eds) Simulation of Semiconductor Processes and Devices 2007. Springer, Vienna. https://doi.org/10.1007/978-3-211-72861-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-72861-1_20

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-72860-4

  • Online ISBN: 978-3-211-72861-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics