Skip to main content

Abstract

For many years, the identification of tumor hypoxia, its systematic characterization and the assessment of its clinical relevance were not possible due to the lack of methods suitable for the routine measurement of intratumoral oxygen tensions in patients. In the late 1980s, a novel and clinically applicable standardized procedure was established enabling the determination of tumor oxygenation in accessible primary tumors, local recurrences, and metastatic lesions in patients using a computerized polarographic needle electrode system (Höckel et al. 1991; Vaupel et al. 1991).Within a relatively short period of time, the significance of tumor oxygenation for therapy outcome became evident in numerous experimental and clinical studies (for a review see Vaupel and Kelleher 1999).

Supported by a grant from the Deutsche Krebshilfe (106758).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Airley R, Loncaster J, Davidson S, Bromley M, Roberts S, Patterson A, Hunter R, Stratford I, West C (2001) Glucose transporter Glut-1 expression correlates with tumor hypoxia and predicts metastasis-free survival in advanced carcinoma of the cervix. Clin Cancer Res 7: 928–934

    CAS  PubMed  Google Scholar 

  2. Anderson CJ, Hoare SF, Ashcroft M, Bilsland AE, Keith WN (2006) Hypoxic regulation of telomerase gene expression by transcriptional and post-transcriptional mechanisms. Oncogene 25: 61–69

    CAS  PubMed  Google Scholar 

  3. Ausserer WA, Bourrat-Floeck B, Green CJ, Laderoute KR, Sutherland RM (1994) Regulation of c-jun expression during hypoxic and low-glucose stress. Mol Cell Biol 14: 5032–5042

    CAS  PubMed  Google Scholar 

  4. Awwad HK, Naggar M, Mocktar N, Barsoum M (1986) Intercapillary distance measurement as an indicator of hypoxia in carcinoma of the cervix uteri. Int J Radiat Oncol Biol Phys 12: 1329–1333

    CAS  PubMed  Google Scholar 

  5. Birner P, Schindl M, Obermair A, Plank C, Breitenecker G, Oberhuber G (2000) Overexpression of hypoxia-inducible factor 1a is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Res 60: 4693–4696

    CAS  PubMed  Google Scholar 

  6. Brizel DM, Scully SP, Harrelson JM, Layfield LJ, Bean JM, Prosnitz LR, Dewhirst MW (1996) Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56: 941–943

    CAS  PubMed  Google Scholar 

  7. Brizel DM, Sibley GS, Prosnitz LR, Scher RL, Dewhirst MW (1997) Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 38: 285–289

    CAS  PubMed  Google Scholar 

  8. Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58: 1408–1416

    CAS  PubMed  Google Scholar 

  9. Bush RS (1986) The significance of anemia in clinical radiation therapy. Int J Radiat Oncol Biol Phys 12: 2047–2050

    CAS  PubMed  Google Scholar 

  10. Chabner B, Allegra CJ, Curt GA, Calabresi P (1996) Antineoplastic agents. In: Goodman & Gilman’s The pharmacological basis of therapeutics, 9th edn. McGraw-Hill, New York, pp 1233–1287

    Google Scholar 

  11. Chaplin DJ, Horsman MR, Trotter MJ, Siemann DW (2000) Therapeutic significance of microenvironmental factors. In: Molls M, Vaupel P (eds) Blood perfusion and microenvironment of human tumors. Implications for clinical radiooncology. Springer, Berlin Heidelberg New York, pp 133–143

    Google Scholar 

  12. Chapman JD, Stobbe CC, Arnfield MR, Santus R, Lee L, McPhee MS (1991) Oxygen dependency of tumor cell killing in vitro by light-activated Photofrin II. Radiat Res 126: 73–79

    Article  CAS  PubMed  Google Scholar 

  13. Cheng KC, Loeb LA (1993) Genomic instability and tumor progression: mechanistic considerations. Adv Cancer Res 60: 121–156

    Article  CAS  PubMed  Google Scholar 

  14. Collingridge DR, Piepmeier JM, Rockwell S, Knisely JPS (1999) Polarographic measurements of oxygen tension in human glioma and surrounding peritumoural brain tissue. Radiother Oncol 53: 127–131

    Article  CAS  PubMed  Google Scholar 

  15. Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 62: 3387–3394

    CAS  PubMed  Google Scholar 

  16. Dachs GU, Tozer GM (2000) Hypoxia modulated gene expression: angiogenesis, metastasis and therapeutic exploitation. Eur J Cancer 36: 1649–1660

    Article  CAS  PubMed  Google Scholar 

  17. Dunst J (2004) Low hemoglobin levels: influence on tumor biology and radiotherapy treatment outcome. Eur J Cancer [Suppl] 2: 3–10

    Article  CAS  Google Scholar 

  18. Durand RE (1991) Keynote address: The influence of microenvironmental factors on the activity of radiation and drugs. Int J Radiat Oncol Biol Phys 20: 253–258

    CAS  PubMed  Google Scholar 

  19. Durand RE (1994) The influence of microenvironmental factors during cancer therapy. In Vivo 8: 691–702

    CAS  PubMed  Google Scholar 

  20. Erlichman C (1992) Pharmacology of anticancer drugs. In: Tannock IF, Hill RP (eds) The basic science of oncology, 2nd edn. McGraw-Hill, New York, pp 317–337

    Google Scholar 

  21. Evans IC, Bergsjø P (1965) The influence of anemia on the results of radiotherapy in carcinoma of the cervix. Radiology 84: 709–717

    CAS  PubMed  Google Scholar 

  22. Evans SM, Koch CJ (2003) Prognostic significance of tumor oxygenation in humans. Cancer Letters 195: 1–16

    Article  CAS  PubMed  Google Scholar 

  23. Evans SM, Judy KD, Dunphy I, Jenkins WT, Nelson PT, Collins R, Wileyto EP, Jenkins K, Hahn SM, Stevens CW, Judkins AR, Phillips P, Geoerger B, Koch CJ (2004) Comparative measurements of hypoxia in human brain tumors using needle electrodes and EF5 binding. Cancer Res 64: 1886–1892

    Article  CAS  PubMed  Google Scholar 

  24. Freitas I, Baronzio GF (1991) Tumor hypoxia, reoxygenation and oxygenation strategies: possible role in photodynamic therapy. J Photochem Photobiol B: Biol 11: 3–30

    Article  CAS  Google Scholar 

  25. Frommhold H, Guttenberger R, Henke M (1998) The impact of blood hemoglobin content on the outcome of radiotherapy. Strahlenther Onkol 174: 31–34

    PubMed  Google Scholar 

  26. Fyles AW, Milosevic M, Wong R, Kavanagh M-C, Pintilie M, Sun A, Chapman W, Levin W, Manchul L, Keane TJ, Hill RP (1998) Oxygenation predicts radiation response and survival in patients with cervix cancer. Radiother Oncol 48: 149–156

    Article  CAS  PubMed  Google Scholar 

  27. Giaccia AJ (1996) Hypoxic stress proteins: survival of the fittest. Semin Radiat Oncol 6: 46–58

    Article  PubMed  Google Scholar 

  28. Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379: 88–91

    Article  CAS  PubMed  Google Scholar 

  29. Graeber TG, Peterson JF, Tsai M, Monica K, Fornace AJ, Giaccia AJ (1994) Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Molecular Cell Biol 14: 6264–6277

    CAS  Google Scholar 

  30. Grau C, Overgaard J (2000) Significance of hemoglobin concentration for treatment outcome. In: Molls M, Vaupel P (eds) Blood perfusion and microenvironment of human tumors. Implications for clinical radiooncology. Springer, Berlin Heidelberg New York, pp 101–112

    Google Scholar 

  31. Gray LH, Conger AD, Ebert M, Hornsey S, Scott OCA (1953) The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26: 638–648

    Article  CAS  PubMed  Google Scholar 

  32. Hall EJ, Giaccia A (2006) Radiobiology for the radiologist, 6th edn. Lippincott, Philadelphia

    Google Scholar 

  33. Harrison L, Blackwell K ( 2004) Hypoxia and anemia: Factors in decreased sensitivity to radiation therapy and chemotherapy? Oncologist 9: 31–40

    Article  PubMed  Google Scholar 

  34. Harrison LB, Chadha M, Hill RJ, Hu K, Shasha D (2002) Impact of tumor hypoxia and anemia on radiation therapy outcomes. Oncologist 7: 492–508Prof. Dr.

    Article  PubMed  Google Scholar 

  35. Henderson BW, Fingar VH (1987) Relationship of tumor hypoxia and response to photodynamic treatment in an experimental mouse tumor. Cancer Res 47: 3110–3114

    CAS  PubMed  Google Scholar 

  36. Henke M, Momm F, Guttenberger R (1999) Erythropoietin for patients undergoing radiotherapy: The Freiburg experience. In: Vaupel P, Kelleher DK (eds) Tumor hypoxia. Pathophysiology, clinical significance and therapeutical perspectives. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 91–97

    Google Scholar 

  37. Henke M, Laszig R, Rübe C, Schäfer U, Haase KD, Schilcher B, Mose S, Beer KT, Burger U, Dougherty C, Frommhold H (2003) Erythropoietin to treat head and neck cancer patients with anaemia undergoing radiotherapy: Randomised, double-blind, placebo-controlled trial. Lancet 362: 1255–1260

    Article  CAS  PubMed  Google Scholar 

  38. Hickman JA, Potten CS, Merritt AJ, Fisher TC (1994) Apoptosis and cancer chemotherapy. Phil Trans R Soc B 345: 319–325

    Article  CAS  PubMed  Google Scholar 

  39. Höckel M, Vaupel P (2001a) Tumor hypoxia: Definitions and current clinical, biological and molecular aspects. J Natl Cancer Inst 93: 266–276

    Article  PubMed  Google Scholar 

  40. Höckel M, Vaupel P (2001b) Prognostic significance of tissue hypoxia in cervical cancer. CME J Gynecol Oncol 6: 216–225

    Google Scholar 

  41. Höckel M, Knoop C, Schlenger K, Vorndran B, Baussmann E, Mitze M, Knapstein PG, Vaupel P (1993) Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol 26: 45–50

    Article  PubMed  Google Scholar 

  42. Höckel M, Schlenger K, Aral B, Mitze M, Schäffer U, Vaupel P (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56: 4509–4515

    PubMed  Google Scholar 

  43. Höckel M, Schlenger K, Höckel S, Aral B, Schäffer U, Vaupel P (1998) Tumor hypoxia in pelvic recurrences of cervical cancer. Int J Cancer 79: 365–369

    Article  PubMed  Google Scholar 

  44. Höckel M, Schlenger K, Höckel S, Vaupel P (1999) Hypoxic cervical cancers with low apoptotic index are highly aggressive. Cancer Res 59: 4525–4528

    PubMed  Google Scholar 

  45. Hoeckel M, Schlenger K, Knoop C, Vaupel P (1991) Oxygenation of carcinomas of the uterine cervix: Evaluation of computerized O2 tension measurements. Cancer Res 51: 6098–6102

    Google Scholar 

  46. Kallinowski F, Buhr HJ (1995) Tissue oxygenation of primary, metastatic and xenografted rectal cancers. In: Vaupel P, Kelleher DK, Günderoth M (eds) Tumor oxygenation. Fischer, Stuttgart, pp 205–209

    Google Scholar 

  47. Kelleher DK, Matthiensen U, Thews O, Vaupel P (1996) Blood flow, oxygenation, and bioenergetic status of tumors after erythropoietin treatment in normal and anemic rats. Cancer Res 56: 4728–4734

    CAS  PubMed  Google Scholar 

  48. Kelleher DK, Thews O, Vaupel P (1999) Modulation of tumor oxygenation and radiosensitivity by erythropoietin. In: Vaupel P, Kelleher DK (eds) Tumor hypoxia. Pathophysiology, clinical significance and therapeutic perspectives. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 83–90

    Google Scholar 

  49. Kim CY, Tsai MH, Osmanian C, Graeber TG, Lee JE, Giffard RG, DiPaolo JA, Peehl DM, Giaccia AJ (1997) Selection of human cervical epithelial cells that possess reduced apoptotic potential to low-oxygen conditions. Cancer Res 57: 4200–4204

    CAS  PubMed  Google Scholar 

  50. Knocke TH, Weitmann H-D, Feldmann H-J, Selzer E, Pötter R (1999) Intratumoral pO2-measurements as predictive assay in the treatment of carcinoma of the uterine cervix. Radiother Oncol 53: 99–104

    Article  CAS  PubMed  Google Scholar 

  51. Koong AC, Chen EY, Giaccia AJ (1994) Hypoxia causes the activation of nuclear factor κB through the phosphorylation of IκBα on tyrosine residues. Cancer Res 54: 1425–1430

    CAS  PubMed  Google Scholar 

  52. Koong AC, Mehta VK, Le QT, Fisher GA, Terris DJ, Brown JM, Bastidas AJ, Vierra M (2000) Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 48: 919–922

    Article  CAS  PubMed  Google Scholar 

  53. Kumar P (2000) Tumor hypoxia and anemia: Impact on the efficacy of radiation therapy. Sem Hematol 37: 4–8

    Article  CAS  Google Scholar 

  54. Laderoute KR, Grant TD, Murphy BJ, Sutherland RM (1992) Enhanced epidermal growth factor receptor synthesis in human squamous carcinoma cells exposed to low levels of oxygen. Int J Cancer 52: 428–432

    Article  CAS  PubMed  Google Scholar 

  55. Laderoute KR, Calaoagan JM, Gustafson-Brown C, Knapp AM, Li G-C, Mendonca HL, Ryan HE, Wang Z, Johnson RS (2002) The response of c-Jun/ AP-1 to chronic hypoxia is hypoxia-inducible factor 1α dependent. Mol Cell Biol 22: 2515–2523

    Article  CAS  PubMed  Google Scholar 

  56. Lartigau E, Randrianarivelo H, Avril M-F, Margulis A, Spatz A, Eschwege F, Guichard M (1997) Intratumoral oxygen tension in metastatic melanoma. Melanoma Res 7: 400–406

    Article  CAS  PubMed  Google Scholar 

  57. Lavey RS (1999) Clinical trial experience using erythropoietin during radiation therapy. In: Vaupel P, Kelleher DK (eds) Tumor hypoxia. Pathophysiology, clinical significance and therapeutic perspectives. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 99–105

    Google Scholar 

  58. Lawrentschuk N, Poon AMT, Foo SS, Johns Putra LG, Murone C, Davis ID, Bolton DM, Scott AM (2005) Assessing regional hypoxia in human renal tumours using 18F-fluoromisonidazole positron emission tomography. Br J Urol Internat 96: 540–546

    Google Scholar 

  59. Loncaster JA, Cooper RA, Logue JP, Davidson SE, Hunter RD, West CML (2000) Vascular endothelial growth factor (VEGF) expression is a prognostic factor for radiotherapy outcome in advanced carcinoma of the cervix. Br J Cancer 83: 620–625

    Article  CAS  PubMed  Google Scholar 

  60. Mattern J, Kallinowski F, Herfarth C, Volm M (1996) Association of resistancerelated protein expression with poor vascularization and low levels of oxygen in human rectal cancer. Int J Cancer 67: 20–23

    Article  CAS  PubMed  Google Scholar 

  61. Mayr NA, Yuh WTC, Magnotta VA, Ehrhardt JC, Wheeler JA, Sorosky JI, Davis CS, Wen B-C, Martin DD, Pelsang RE, Buller RE, Oberley LW, Mellenberg DE, Hussey DH (1996) Tumor perfusion studies using fast magnetic resonance imaging technique in advanced cervical cancer: a new noninvasive predictive assay. Int J Radiat Oncol Biol Phys 36: 623–633

    Article  CAS  PubMed  Google Scholar 

  62. Mitchell JB, McPherson S, De Graff W, Gamson J, Zabell A, Russo A (1985) Oxygen dependence of hematoporphyrin derivative-induced photo-inactivation of Chinese hamster cells. Cancer Res 45: 2008–2011

    CAS  PubMed  Google Scholar 

  63. Moan J, Sommer S (1985) Oxygen dependence of the photosensitizing effect of hematoporphyrin derivative in NHIK 3025 cells. Cancer Res 45: 1608–1610

    CAS  PubMed  Google Scholar 

  64. Moulder JE, Rockwell S (1987) Tumor hypoxia: its impact on cancer therapy. Cancer Metast Rev 5: 313–341

    Article  CAS  Google Scholar 

  65. Movsas B, Chapman JD, Greenberg RE, Hanlon AL, Horwitz EM, Pinover WH, Stobbe C, Hanks GE (2000) Increasing levels of hypoxia in prostate carcinoma correlate significantly with increasing clinical stage and patient age. Cancer 89: 2018–2024

    Article  CAS  PubMed  Google Scholar 

  66. Movsas B, Chapman JD, Horwitz EM, Pinover WH, Greenberg RE, Hanlon AL, Iyer R, Hanks GE (1999) Hypoxic regions exist in human prostate carcinoma. Urology 53: 11–18

    Article  CAS  PubMed  Google Scholar 

  67. Nishi H, Nakada T, Kyo S, Inoue M, Shay JW, Isaka K (2004) Hypoxia-inducible factor 1 mediates upregulation of telomerase (hTERT). Mol Cell Biol 24: 6076–6083

    Article  CAS  PubMed  Google Scholar 

  68. Nordsmark M, Overgaard J (2000) A confirmatory prognostic study on oxygenation status and loco-regional control in advanced head and neck squamous cell carcinoma treated by radiation therapy. Radiother Oncol 57: 39–43

    Article  CAS  PubMed  Google Scholar 

  69. Nordsmark M, Overgaard J (2004) Tumor hypoxia is independent of hemoglobin and prognostic for loco-regional tumor control after primary radiotherapy in advanced head and neck cancer. Acta Oncol 43: 396–403

    Article  PubMed  Google Scholar 

  70. Nordsmark M, Hoyer M, Keller J, Nielsen OS, Jensen OM, Overgaard J (1996) The relationship between tumor oxygenation and cell proliferation in human soft tissue sarcomas. Int J Radiat Oncol Biol Phys 35: 701–708

    CAS  PubMed  Google Scholar 

  71. Nordsmark M, Keller J, Nielsen OS, Lundorf E, Overgaard J (1997) Tumour oxygenation assessed by polarographic needle electrodes and bioenergetic status measured by 31P magnetic resonance spectroscopy in human soft tissue tumours. Acta Oncol 36: 565–571

    Article  CAS  PubMed  Google Scholar 

  72. Nordsmark M, Alsner J, Keller J, Nielsen OS, Jensen OM, Horsman MR, Overgaard J (2001) Hypoxia in human sof tissue sarcomas: adverse impact on survival and no association with p53 mutations. Br J Cancer 84: 1070–1075

    Article  CAS  PubMed  Google Scholar 

  73. Nordsmark M, Bentzen SM, Rudat V, Brizel D, Lartigau E, Stadler P, Becker A, Adam M, Molls M, Dunst J, Terris DJ, Overgaard J (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol 77: 18–24

    Article  PubMed  Google Scholar 

  74. Parker C, Milosevic M, Toi A, Sweet J, Panzarella T, Bristow R, Catton C, Catton P, Crook J, Gospodarowicz M, McLean M, Warde P, Hill RP (2004) Polarographic electrode study of tumor oxygenation in clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 58: 750–757

    Article  PubMed  CAS  Google Scholar 

  75. Powell MEB, Collingridge DR, Saunders MI, Hoskin PJ, Hill SA, Chaplin DJ (1999) Improvement in human tumour oxygenation with carbogen of varying carbon dioxide concentrations. Radiother Oncol 50: 167–171

    Article  CAS  PubMed  Google Scholar 

  76. Raleigh JA (ed) (1996) Hypoxia and its clinical significance. Semin Radiat Oncol 6: 1–70

    Google Scholar 

  77. Rampling R, Cruickshank G, Lewis AD, Fitzsimmons SA, Workman P (1994) Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumors. Int J Radiat Oncol Biol Phys 29: 427–432

    CAS  PubMed  Google Scholar 

  78. Révész L, Siracká E, Siracký J, Delides G, Pavlaki K (1989) Variation of vascular density within and between tumors of the uterine cervix and its predictive value for radiotherapy. Int J Radiat Oncol Biol Phys 16: 1161–1163

    PubMed  Google Scholar 

  79. Reynolds TY, Rockwell S, Glazer PM (1996) Genetic instability induced by the tumor microenvironment. Cancer Res 56: 5754–5757

    CAS  PubMed  Google Scholar 

  80. Rice GC, Hoy C, Schimke RT (1986) Transient hypoxia enhances the frequency of dihydrofolate reductase gene amplification in Chinese hamster ovary cells. Proc Natl Acad Sci USA 83: 5978–5982

    Article  CAS  PubMed  Google Scholar 

  81. Russo CA, Weber TK, Volpe CM, Stoler DL, Petrelli NJ, Rodriguez-Bigas M, Burhans WC, Anderson GR (1995) An anoxia inducible endonuclease and enhanced DNA breakage as contributors to genomic instability in cancer. Cancer Res 55: 1122–1128

    CAS  PubMed  Google Scholar 

  82. Sakata K, Kwok TT, Murphy BJ, Laderoute KR, Gordon GR, Sutherland RM (1991) Hypoxia-induced drug resistance: comparison to P-glycoproteinassociated drug resistance. Br J Cancer 64: 809–814

    CAS  PubMed  Google Scholar 

  83. Sanna K, Rofstad EK (1994) Hypoxia-induced resistance to doxorubicin and methotrexate in human melanoma cell lines in vitro. Int J Cancer 58: 258–262

    Article  CAS  PubMed  Google Scholar 

  84. Semenza GL (2000a) Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Molec Biol 35: 71–103

    Article  CAS  Google Scholar 

  85. Semenza GL (2000b) HIF-1: mediator of physiological and pathophysiological response to hypoxia. J Appl Physiol 88: 1474–1480

    CAS  PubMed  Google Scholar 

  86. Shannon AM, Bouchier-Hayes DJ, Condron CM, Toomey D (2003) Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat Rev 29: 297–307

    Article  CAS  PubMed  Google Scholar 

  87. Shannon AM, Bouchier-Hayes DJ, Condron CM, Toomey D (2005) Correction of anaemia through the use of darbepoetin alfa improves chemotherapeutic outcome in a murine model of Lewis lung carcinoma. Br J Cancer 93: 224–232

    Article  CAS  PubMed  Google Scholar 

  88. Silver DF, Piver MS (1999) Effects of recombinant human erythropoietin on the antitumor effect of cisplatin in SCID mice bearing human ovarian cancer: a possible oxygen effect. Gynecol Oncol 73: 280–284

    Article  CAS  PubMed  Google Scholar 

  89. Siracká E, Révész L, Kovác R, Siracký J (1988) Vascular density in carcinoma of the uterine cervix and its predictive value for radiotherapy. Int J Cancer 41: 819–822

    Article  PubMed  Google Scholar 

  90. Song CW, Lyons JC, Luo Y (1993) Intracellular pH in solid tumors: Influence on therapeutic response. In: Teicher BA (ed) Drug resistance in oncology. Marcel Dekker, New York, pp 25–51

    Google Scholar 

  91. Stackpole CW, Groszek L, Kalbag SS (1994) Benign-to-malignant B16 melanoma progression induced in two stages in vitro by exposure to hypoxia. J Natl Cancer Inst 86: 361–367

    Article  CAS  PubMed  Google Scholar 

  92. Stadler P, Becker A, Feldmann HJ, Hänsgen G, Dunst J, Würschmidt, Molls M (1999) Influence of the hypoxic subvolume on the survival of patients with head and neck cancer. Int J Radiat Oncol Biol 44: 749–754

    Article  CAS  Google Scholar 

  93. Stoler DL, Anderson GR, Russo CA, Spina AM, Beerman A (1992) Anoxiainducible endonuclease activity as a potential basis of the genomic instability of cancer cells. Cancer Res 52: 4372–4378

    CAS  PubMed  Google Scholar 

  94. Stüben G, Thews O, Pöttgen C, Knühmann K, Vaupel P, Stuschke M (2001) Recombinant human erythropoietin increases the radiosensitivity of xenografted human tumours in anaemic nude mice. J Cancer Res Clin Oncol 127: 346–350

    Article  PubMed  Google Scholar 

  95. Stüben G, Thews O, Pöttgen C, Knühmann K, Sack H, Stuschke M, Vaupel P (2003a) Impact of anemia prevention by recombinant human erythropoietin on the sensitivity of xenografted glioblastomas to fractionated irradiation. Strahlenther Onkol 179: 620–625

    Article  PubMed  Google Scholar 

  96. Stüben G, Pöttgen C, Knühmann K, Schmidt K, Stuschke M, Thews O, Vaupel P (2003b) Erythropoietin restores the anemia-induced reduction in radiosensitivity of experimental human tumors in nude mice. Int J Radiat Oncol Biol Phys 55: 1358–1362

    PubMed  Google Scholar 

  97. Sundfor K, Lyng H, Rofstad EK (1998) Oxygen tension and vascular density in adenocarcinoma and squamous cell carcinoma of the uterine cervix. Acta Oncol 37: 665–670

    Article  CAS  PubMed  Google Scholar 

  98. Sundfor K, Lyng H, Trope CG, Rofstad EK (2000) Treatment outcome in advanced squamous cell carcinoma of the uterine cervix: relationships to pretreatment tumor oxygenation and vascularization. Radiother Oncol 54: 101–107

    Article  CAS  PubMed  Google Scholar 

  99. Sutherland RM (1998) Tumor hypoxia and gene expression. Implications for malignant progression and therapy. Acta Oncol 37: 567–574

    Article  CAS  PubMed  Google Scholar 

  100. Tannock IF, Hill RP, Bristow RG, Harrington (eds) (2005) The basic science of oncology, 4th edn. McGraw-Hill, New York

    Google Scholar 

  101. Teicher BA (ed) (1993) Drug resistance in oncology. Marcel Dekker, New York

    Google Scholar 

  102. Teicher BA (1994) Hypoxia and drug resistance. Cancer Metast 13: 139–168

    Article  CAS  Google Scholar 

  103. Teicher BA (1995) Physiologic mechanisms of therapeutic resistance. Hematol/ Oncol Clinics North America 9: 475–506

    CAS  Google Scholar 

  104. Teicher BA, Lazo JS, Sartorelli AC (1981) Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells. Cancer Res 41: 73–81

    CAS  PubMed  Google Scholar 

  105. Teicher BA, Holden SA, Al-Achi A, Herman TS (1990) Classification of antineoplastic treatments by their differential toxicity toward putative oxygenated and hypoxic tumor subpopulations in vivo in the FSaII murine fibrosarcoma. Cancer Res 50: 3339–3344

    CAS  PubMed  Google Scholar 

  106. Thews O, Kelleher DK, Vaupel P (2001) Erythropoietin restores the anemiainduced reduction in cyclophosphamide cytotoxicity in rat tumors. Cancer Res 61: 1358–1361

    CAS  PubMed  Google Scholar 

  107. Thews O, Koenig R, Kelleher DK, Kutzner J, Vaupel P (1998) Enhanced radiosensitivity in experimental tumours following erythropoietin treatment of chemotherapy-induced anaemia. Br J Cancer 78: 752–756

    CAS  PubMed  Google Scholar 

  108. Vaupel P (1994) Blood flow, oxygenation, tissue pH distribution and bioenergetic status of tumors. Ernst Schering Research Foundation, Lecture 23, Berlin

    Google Scholar 

  109. Vaupel P (1997a) Blood flow and oxygenation status of head and neck carcinomas. Adv Exp Med Biol 428: 89–95

    CAS  PubMed  Google Scholar 

  110. Vaupel P (1997b) The influence of tumor blood flow and microenvironmental factors on the efficacy of radiation, drugs and localized hyperthermia. Klin Pädiatr 209: 243–249

    Article  CAS  PubMed  Google Scholar 

  111. Vaupel P (2001) Durchblutung und Oxygenierungsstatus von Kopf-Hals-Tumoren. In: Böttcher HD, Wendt TG, Henke M (Hrsg) Klinik des Rezidivtumors im Kopf-Hals-Bereich. Grundlagen — Diagnostik — Therapie. Zuckschwerdt, München Bern Wien New York, S 7–23

    Google Scholar 

  112. Vaupel P (2004) The role of hypoxia-induced factors in tumor progression. Oncologist 9: 10–17

    Article  CAS  PubMed  Google Scholar 

  113. Vaupel P (2004) Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14: 198–206

    Article  PubMed  Google Scholar 

  114. Vaupel P, Harrison L (2004) Tumor hypoxia: Causative factors, compensatory mechanisms, and cellular response. Oncologist 9: 4–9

    Article  PubMed  Google Scholar 

  115. Vaupel P, Höckel M (1999) Oxygenation status of breast cancer: The Mainz experience. In: Vaupel P, Kelleher DK (eds) Tumor hypoxia. Pathophysiology, clinical significance and therapeutic perspectives. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 1–11

    Google Scholar 

  116. Vaupel P, Höckel M (2000) Blood supply, oxygenation status and metabolic micromilieu of breast cancers: Characterization and therapeutic relevance. Int J Oncol 17: 869–879

    CAS  PubMed  Google Scholar 

  117. Vaupel P, Höckel M (2001) Hypoxie beim Zervixkarzinom: Pathogenese, Charakterisierung und biologische/klinische Konsequenzen. Zentralbl Gynäkol 123: 192–197

    Article  CAS  PubMed  Google Scholar 

  118. Vaupel P, Kelleher DK (eds) (1999) Tumor hypoxia: pathophysiology, clinical significance and therapeutic perspectives. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  119. Vaupel P, Mayer A (2005) Effects of anaemia and hypoxia on tumour biology. In: Bokemeyer C, Ludwig H (eds) Anaemia in cancer, 2nd edn. Elsevier, Edingburgh London New York, pp 47–66

    Google Scholar 

  120. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Res 49: 6449–6465

    CAS  PubMed  Google Scholar 

  121. Vaupel P, Thews O, Hoeckel M (2001) Treatment resistance of solid tumors: role of hypoxia and anemia. Med Oncol 18: 243–259

    Article  CAS  PubMed  Google Scholar 

  122. Vaupel P, Mayer A, Höckel M (2004) Tumor hypoxia and malignant progression. Methods Enzymol 381: 335–354

    Article  CAS  PubMed  Google Scholar 

  123. Vaupel P, Schlenger K, Knoop C, Hoeckel M (1991) Oxygenation of human tumors: Evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res 51: 3316–3322

    CAS  PubMed  Google Scholar 

  124. Vaupel P, Thews O, Mayer A, Höckel S, Höckel M (2002) Oxygenation status of gynecologic tumors: What is the optimal hemoglobin level? Strahlenther Onkol 12: 727–731

    Article  Google Scholar 

  125. Vera JC, Castillo GR, Rosen OM (1991) A possible role for a mammalian facilitative hexose transporter in the development of resistance to drugs. Mol Cell Biol 11: 3407–3418

    CAS  PubMed  Google Scholar 

  126. Young SD, Marshall RS, Hill RP (1988) Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumour cells. Proc Natl Acad Sci USA 85: 9533–9537

    Article  CAS  PubMed  Google Scholar 

  127. Wildiers H, Guetens G, de Boeck G, Landuyt W, Verbeken E, Highley M, de Brunn EA, van Oostrom AT (2002) Melphalan availability in hypoxia-inducible factor-1α+/+ and factor-1α−/− tumors is independent of tumor vessel density and correlates with melphalan erythrocyte transport. Int J Cancer 99: 514–519

    Article  CAS  PubMed  Google Scholar 

  128. Zeller WJ (1995) Bleomycin. In: Zeller WJ, zur Hausen H (Hrsg) Onkologie: Grundlagen, Diagnostik, Therapie, Entwicklungen. ecomed, Landsberg, pp IV–3.12, 1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Vaupel or Michael Höckel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this chapter

Cite this chapter

Vaupel, P., Höckel, M. (2008). Tumor hypoxia and therapeutic resistance. In: Nowrousian, M.R. (eds) Recombinant Human Erythropoietin (rhEPO) in Clinical Oncology. Springer, Vienna. https://doi.org/10.1007/978-3-211-69459-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-69459-6_11

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-25223-9

  • Online ISBN: 978-3-211-69459-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics