Skip to main content

Biologie der Wundheilung

  • Chapter

Zusammenfassung

Wundheilung ist ein komplexes Geschehen, das die morphologische und funktionelle Wiederherstellung von zerstörtem Gewebe zum Ziel hat. Die physiologische Wundheilung umfasst verschiedene, sich überlappende und teilweise parallel ablaufende Phasen. Die Regulation der fein aufeinander abgestimmten Schritte erfolgt durch Zytokine und Wachstumsfaktoren aus Zellen der Wundumgebung und der Wunde selbst.

Nach einer Verletzung wird zunächst die Wunde durch ein Fibrinkoagulum provisorisch verschlossen. Entzündungszellen werden rekrutiert und wandern ein: neutrophile Granulozyten und Monozyten/Makrophagen eliminieren Keime und Debris. Makrophagen stimulieren schließlich die Einwanderung und Proliferation von Fibroblasten und die Angiogenese. Das Granulationsgewebe füllt den Gewebedefekt auf und bildet eine neue extrazelluläre Matrix, Wundkontraktion beschleunigt den Wundverschluss. Parallel dazu erfolgt die Reepithelisierung des Defektes.

Der Wundheilungsprozess kann durch vielfältige lokale Störungen und systemische Grundkrankheiten gebremst werden. Der Heilungsprozess bleibt in diesem Fall meist in der Entzündungsphase, seltener in der Granulationsphase stecken. Die Folge ist eine chronische Wunde, die dann trotz aller therapeutischen Bemühungen nicht in einer angemessenen Zeitspanne abheilt. Entzündung, Gewebeschädigung durch überschießende Proteaseaktivität und freie Sauerstoffradikale sowie Proliferationsschwäche der Fibroblasten (Seneszenz) sind pathogenetische Merkmale dieser Heilungsstörung (Ausführliche Übersichtsarbeiten zur Biologie der Wundheilung

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Agren MS, Steenfos HH, Dabelsteen S et al (1999) Proliferation and mitogenic response to PDGF-BB of fibroblasts isolated from chronic venous leg ulcers is ulcer-age dependent. J Invest Dermatol 112: 463–69

    Article  PubMed  CAS  Google Scholar 

  2. Asmussen PD, Söllner B (1993) Die Prinzipien der Wundheilung. Hippokrates Verlag, Stuttgart, 70–107

    Google Scholar 

  3. Baum CL, Arpey C (2005) Normal cutaneous wound healing: clinical correlation with cellular and molecular events. Dermatol Surg 31: 674–86

    Article  PubMed  CAS  Google Scholar 

  4. Bello YM, Phillips TJ (2000) Recent advances in wound healing. JAMA 283: 716–18

    Article  PubMed  CAS  Google Scholar 

  5. Braun Falco O, Plewig G, Wolff HH, Burgdorf WHC, Landthaler M (2005) Dermatologie und Venerologie, 5. Aufl. Springer Medizin Verlag, Heidelberg, 13

    Google Scholar 

  6. Bucalo B, Eaglestein WH, Falanga V (1993) Inhibition of cellular proliferation by chronic wound fluid. Wound Rep Reg 1: 181–186

    Article  CAS  Google Scholar 

  7. Bullen EC, Longaker MT, Updike DL et al (1995) TIMP-1 is decreased and activated gelatinases are increased in chronic wounds. J Invest Dermatol 104: 236–240

    Article  PubMed  CAS  Google Scholar 

  8. Clark RAF (1985) Cutaneous tissue repair. Basic biologic considerations. J Am Acad Dermatol 13: 701–725

    PubMed  CAS  Google Scholar 

  9. Cowin AJ, Hatzirodos N, Holding CA, et al (2001) Effect of healing on the expression of transforming growth factor βs and their receptors in chronic venous leg ulcers. J Invest Dermatol 117: 1282–1289

    Article  PubMed  CAS  Google Scholar 

  10. Desmoulière A, Chaponnier C, Gabbiani G (2005) Tissue repair, contraction, and the myofibroblast. Wound Rep Reg 13: 7–12

    Article  Google Scholar 

  11. Dissemond J (2006) Wann ist eine Wunde chronisch? Der Hautarzt 57: 55

    Article  CAS  Google Scholar 

  12. Enoch S, Price P (2004) Cellular, molecular and biochemical differences in the pathophysiology of healing between acute wounds, chronic wounds and wounds in the aged. World Wide Wounds: http://www.worldwidewounds.com/2004/august/enoch/pathophysiology-of-healing.html

    Google Scholar 

  13. Falanga V (2003) Mechanisms of cutaneous wound repair, chap. 21. In: Fitzpatrick’s dermatology in general medicine, 6th ed. (Freedberg IM, Eisen AZ, Wolff K, Austen KF, Goldsmith LA, Katz SI, eds). McGraw-Hill Medical Publishing Division, 236–246

    Google Scholar 

  14. Falanga V, Shen J (2001) Growth factors, signal transduction and cellular responses. In: Cutaneous wound healing (Falanga V, ed). Martin Dunitz, London, 81–93

    Google Scholar 

  15. Fritsch P (2004) Dermatologie und Venerologie. Grundlagen, Klinik, Atlas, 2. Aufl. Springer, Berlin Heidelberg, 41–42

    Google Scholar 

  16. Grinell F, Zhu M (1996) Fibronectin degradation in chronic wounds depends on the relative levels of elastase, α1-proteinase inhibitor and α2-macrogobulin. J Invest Dermatol 106: 335–41

    Article  Google Scholar 

  17. Harding KG, Moore K, Phillips TJ (2005) Wound chronicity and fibroblast senescence — implications for treatment. Int Wound J 2: 364–68

    Article  PubMed  Google Scholar 

  18. Herrick S, Ashcroft G, Ireland G et al (1997) Up-regulation of elastase in acute wounds of healthy aged humans and chronic venous leg ulcers are associated with matrix degradation. Lab Invest 77: 281–88

    PubMed  CAS  Google Scholar 

  19. Iocono JA, Ehrlich HP, Gottrup F et al (1998) The biology of healing. In: Wounds: Biology and management (Leaper DJ, Harding KG, eds). Oxford University Press, Oxford New York, 10–22

    Google Scholar 

  20. Jacinto A, Martinez-Arias A, Martin P (2001) Mechanisms of epithelial fusion and repair. Nat Cell Biol 3: E117–E123

    Article  PubMed  CAS  Google Scholar 

  21. Jude EB, Blakytny R, Bulmer J et al (2002) Transforming growth factor-β 1,2,3 and receptor type I and II in diabetic foot ulcers. Diabet Med 19: 440–447

    Article  PubMed  CAS  Google Scholar 

  22. Kirsner RS (2003) Wound healing, chap. 141. In: Dermatology (Bolognia JL, Jorizzo JL, Rapini RP, Horn T, Mancini A, Mascaro JM, Salasche SJ, Saurat JH, Stingl G, eds). Mosby, London, 2207–18

    Google Scholar 

  23. König M, Peschen M, Vanscheidt W (1999) Molecular biology of chronic wounds. In: Management of leg ulcers. Curr Probl Dermatol (Hafner J, Ramelet A-A, Schmeller W, Brunner UV, eds). Karger, Basel, 8–12

    Chapter  Google Scholar 

  24. Lauer G, Sollberg S, Cole M et al (2000) Expression and proteolysis of vascular endothelial growth factor is increased in chronic wounds. J Invest Dermatol 115: 12–18

    Article  PubMed  CAS  Google Scholar 

  25. Li WW, Talcott KE, Zhai AW, Kruger EA, Li VW (2005) The role of therapeutic angiogenesis in tissue repair and regeneration. Adv Skin Wound Care 18: 491–500

    Article  PubMed  Google Scholar 

  26. Majno G, Gabbiani G, Hirschel BJ, et al (1971) Contraction of granulation tissue in vitro: similarity to smooth muscle. Science 173: 548–550

    Article  PubMed  CAS  Google Scholar 

  27. Martin GM, Sprague CA, Epstein CJ (1970) Replicative life span of cultivated human cells. Effects of donor’s age, tissue and genotype. Lab Invest 1970 2: 86–92

    Google Scholar 

  28. Martin P, Leibovich SJ (2005) Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol 15: 559–607

    Article  CAS  Google Scholar 

  29. Mauro T (2005) Natural course of wound repair versus impaired healing in chronic cutaneous ulcers. In: Wound healing and ulcers of the skin. Diagnosis and therapy — the practical approach (Shai A, Maibach HI, eds). Springer, Berlin Heidelberg New York, 7–17

    Google Scholar 

  30. McGrath JA, Breathnach SM (2004) Wound healing, chap. 11. In: Rook’s textbook of dermatology, 7th ed. (Burns T, Breathnach S, Cox N, Griffiths C, eds). Blackwell Science, 11.1–11.25

    Google Scholar 

  31. Mehendale F, Martin P (2001) The cellular and molecular events of wound healing. In: Cutaneous wound healing (Falanga V, ed). Martin Dunitz, London, 15–37

    Google Scholar 

  32. Mendez MV, Raffetto JD, Phillips TJ et al (1999) The proliferative capacity of neonatal skin fibroblasts is reduced after exposure to venous ulcer wound fluid: A potential mechanism for senescence in venous ulcers. J Vasc Surg 30: 734–743

    Article  PubMed  CAS  Google Scholar 

  33. Mendez MV, Stanley A, Park HY et al (1998) Fibroblasts cultured from venous ulcers display cellular characteristics of senescence. J Vasc Surg 28: 876–883

    Article  PubMed  CAS  Google Scholar 

  34. Micera A, Vigneti E, Pickholtz D et al (2001) Nerve growth factor displays stimulatory effects on human skin and lung fibroblasts, demonstrating a direct role for this factor in tissue repair. Proc Natl Acad Sci USA 98: 6162–67

    Article  PubMed  CAS  Google Scholar 

  35. Mitchison TJ, Cramer LP (1996) Actin-based cell motility and cell locomotion. Cell 84: 371–79

    Article  PubMed  CAS  Google Scholar 

  36. Moseley R, Stewart JE, Stephens P, Waddington RJ, Thomas DW (2004) Extracellular matrix metabolites as potential biomarkers of disease activity in wound fluid: lessons learned from other inflammatory diseases? Br J Dermatol 150: 401–413

    Article  PubMed  CAS  Google Scholar 

  37. Raffetto JD, Mendez MV, Phillips TJ et al (1999) The effect of passage number on fibroblast cellular senescence in patients with chronic venous insufficiency with and without ulcer. Am J Surg 178: 107–12

    Article  PubMed  CAS  Google Scholar 

  38. Santoro MM, Gaudino G (2005) Cellular and molecular facets of keratinocyte reepithelization during wound healing. Exp Cell Res 304: 274–86

    Article  PubMed  CAS  Google Scholar 

  39. Schaffer CJ, Nanney LB (1996) Cell biology of wound healing. Int Rev Cytol 169: 151–81

    Article  PubMed  CAS  Google Scholar 

  40. Scharfetter-Kochanek K, Schüller J, Meewes C et al (2003) Das chronisch venöse Ulcus cruris. Pathogenese und Bedeutung des »aggressiven Mikromilieus«. JDDG 1: 58–67

    Article  Google Scholar 

  41. Schneider EL, Mitsui Y (1976) The relationship between in vitro cellular aging and in vivo human age. Proc Natl Acad Sci USA 73: 3584–88

    Article  PubMed  CAS  Google Scholar 

  42. Schultz GS, Ladwig G, Wysocki A (2005) Extracellular matrix: review of its roles in acute and chronic wounds. http://www.worldwidewounds.com/2005/august/schultz/extrace-matric-acute-chronic-wounds.html

    Google Scholar 

  43. Singer AJ, Clark RAF (1999) Cutaneous wound healing. NEJM 341: 738–46

    Article  PubMed  CAS  Google Scholar 

  44. Smith PG, Liu M (2002) Impaired cutaneous wound healing after sensory denervation in developing rats: effects on cell proliferation and apoptosis. Cell Tissue Res 307: 281–91

    Article  PubMed  CAS  Google Scholar 

  45. Smola H, Eming S, Hess S, Werner S, Krieg T (2001) Wundheilung und Wundheilungsstörungen. Moderne Konzepte zur Pathophysiologie und Therapie. Deutsches Ärzteblatt 98: 2802–09

    Google Scholar 

  46. Stanley A, Osler T (2001) Senescence and the healing rates of venous ulcers. J Vasc Surg 33: 1206–11

    Article  PubMed  CAS  Google Scholar 

  47. Tomasek JJ, Gabbiani G, Hinz B et al (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3: 349–63

    Article  PubMed  CAS  Google Scholar 

  48. Trengove NJ, Stacey MC, MacAuley S et al (1999) Analysis of the acute and chronic wound environments: The role of proteases and their inhibitors. Wound Rep Reg 7: 442–52

    Article  CAS  Google Scholar 

  49. Vande Berg JS, Rudolph R, Hollan C et al (1998) Fibroblast senescence in pressure ulcers. Wound Rep Reg 6: 38–49

    Article  CAS  Google Scholar 

  50. Weller R (2003) Nitric oxide: a key mediator in cutaneous physiology. Clin Exp Dermatol 28: 511–514

    Article  PubMed  CAS  Google Scholar 

  51. Werner S, Grose R (2002) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83: 835–870

    Google Scholar 

  52. Zhao M, Song B, Pu J et al (2003) Direct visualization of a stratified epithelium reveals hat wounds heal by unified sliding of cell sheets. FASEB J 17: 397–406

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag/Wien

About this chapter

Cite this chapter

Auböck, J. (2007). Biologie der Wundheilung. In: Wild, T., Auböck, J. (eds) Manual der Wundheilung. Springer, Vienna. https://doi.org/10.1007/978-3-211-69454-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-69454-1_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-25212-3

  • Online ISBN: 978-3-211-69454-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics