Skip to main content
  • 3803 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adams V, Jiang H, Yu J, Mobius-Winkler S, Fiehn E, Linke A, Weigl C, Schüler G, Hambrecht R (1999) Apoptosis in skeletal myocytes of patients with chronic heart failure is associated with exercise intolerance. J Am Coll Cardiol 33(4): 959–965

    PubMed  CAS  Google Scholar 

  • Andersson A, Sjodin A, Hedman A, Olsson R, Vessby (2000) Fatty acid profile of skeletal muscle phospholipids in trained and untrained young men. Am J Physiol Endocrinol Metab 279(4): E744–751

    PubMed  CAS  Google Scholar 

  • Aunola S, Rusko H (1988) Comparison of two methods for aerobic threshold determination. Eur J Appl Physiol 57: 420–424

    CAS  Google Scholar 

  • Beaver WL, Wasserman K, Whipp BJ (1985) Improved detection of lactate threshold during exercise using a log-log transformation. J Appl Physiol 59: 1936–1940

    PubMed  CAS  Google Scholar 

  • Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60: 2020–2027

    PubMed  CAS  Google Scholar 

  • Belardinelli R, Georgiou D, Scocco V, Barstow TJ, Purcaro A (1995) Low intensity exercise training in patients with chronic heart failure. J Am Coll Cardiol 26(4): 975–982

    PubMed  CAS  Google Scholar 

  • Berg A, Stippig J, Keul J, Huber G (1980) Aktuelle Aspekte der modernen Ergometrie. Bewegungstherapie und ambulante Koronargruppen. 1. Zur Beurteilung der Leistungsfähigkeit und Belastbarkeit von Patienten mit koronarer Herzkrankheit. Dtsch Z Sportmed 31: 199–205

    Google Scholar 

  • Bigard AX, Boehm E, Veksler V, Mateo P, Anflous K, Ventura-Clapier R (1998) Muscle unloading induces slow to fast transitions in myofibrillar but not mitochondrial properties. Relevance to skeletal muscle abnormalities in heart failure. J Mol Cell Cardiol 30(11): 2391–2401

    PubMed  CAS  Google Scholar 

  • Blei ML, Conley KE, Kushmerick MJ (1993) Seperate measures of ATP utilization and recovery in human skeletal muscle. J Physiology 465: 203–233

    CAS  Google Scholar 

  • Bodner GM (1986) The tricarboxylic acid (TCA, citiric acid, Krebs cycle). J Chem Ed 63: 663–673

    Google Scholar 

  • Bodner ME, Rhodes Ec (2000) A Review of the concept of the heart rate deflection point. Sports Med 30:31–46

    PubMed  CAS  Google Scholar 

  • Brooke JD, Hamley EJ (1972) The heart-rate — physical work curve analysis for the prediction of exhausting work ability. Med Sci Sports Exerc 1: 23–26

    Google Scholar 

  • Brooks GA (1985) Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc 17: 22–31

    PubMed  CAS  Google Scholar 

  • Brotherhood JR (1984) Nutrition and sports performance. Sports Medicine 1: 350–389

    PubMed  CAS  Google Scholar 

  • Brouns F, Saris WHM, Stroecken J, Beckers E, Thijssen R, Rehrer P, Hoor F (1989a) Eating, drinking cycling. A controll Tour de France simulation study Part 1. Int J Sports Med 10: 32–40

    Google Scholar 

  • Brouns F, Saris WHM, Stroecken J, Beckers E, Thijssen R, Rehrer P, Hoor F (1989b) Eating, drinking cycling. A controll Tour de France simulation study Part 2. Int J Sports Med 10: 41–48

    Google Scholar 

  • Brouns F, Rehrer NJ, Saris WH, Beckers E, Menheere P, ten Hoor F (1989c) Effect of carbohydrate intake during warming-up on the regulation of blood glucose during exercise. Int J Sports Med 10 (Suppl.): 68–75

    Google Scholar 

  • Brunotte F, Thompson CH, Adamopoulos S, Coats A, Unitt J, Lindsay D, Kaklamanis L, Radda GK, Rajagopalan B (1995) Rat skeletal muscle metabolism in experimental heart failure: effects of physical training. Acta Physiol Scand 154(4): 439–447

    PubMed  CAS  Google Scholar 

  • Bunc V, Hofmann P, Gaisl G (1989) Vergleich zweier nichtinvasiver Methoden zur Bestimmung der anaeroben Schwelle. Med und Sport 29: 75–77

    Google Scholar 

  • Carvalho RF, Cicogna AC, Campos GE, De Assis JM, Padovani CR, Okoshi MP, Pai-Silva MD (2003) Myosin heavy chain expression and atrophy in rat skeletal muscle during transition from cardiac hypertrophy to heart failure. Int J Exp Pathol 84(4): 201–206

    PubMed  CAS  Google Scholar 

  • Coats A, Adamopoulos S, Radaelli A, McCance A, Meyer T, Bernardi L, Solda P, Davey P, Ormerod O, Forfar C, Conway J, Sleight P (1992) Controlled trial of physical training in chronic heart failure: exercise performance, hemodynamics, ventilation, and autonomic function. Circulation 85: 2119–2131

    PubMed  CAS  Google Scholar 

  • Coggan AR, Raguso CA, Gastaldelli A, Sidossis LS, Yeckel CW (2000) Fat metabolism during highintensity exercise in endurance-trained and untrained men. Metabolism 49(1): 122–128

    PubMed  CAS  Google Scholar 

  • Cohen-Solal A, Laperche T, Morvan D, Geneves M, Caviezel B, Gourgon R (1995) Prolonged kinetics of recovery of oxygen consumption after maximal graded exercise in patients with chronic heart failure. Analysis with gas exchange measurements and NMR spectroscopy. Circulation 91(12): 2924–2932

    PubMed  CAS  Google Scholar 

  • Conconi F, Ferrari M, Ziglo PG, Droghetti P, Codeca I (1982) Determination of the anaerobic threshold by a noninvasive field test in runners. J Appl Physiol 52: 869–873

    PubMed  CAS  Google Scholar 

  • Conconi F, Grazzi G, Casoni I, Guglielmini C, Brosetto C, Ballarin E, Mazzoni G, Patracini M, Manfredi F (1996) The Conconi Test: Methodology after 12 years of application. Int J Sports Med 17:509–519

    PubMed  CAS  Google Scholar 

  • Connett RJ (1988) Analysis of metabolic control: new insights using scaled creatine kinase model. Am J Physiol 254: 949–959

    Google Scholar 

  • Corrà U, Mazzani A, Bosimi E, Scapellato F, Imparato A, Gianuzzi P (2002) Ventilatory response to exercise improves risk stratification in patients with chronic heart failure and intermediate functional capacity. American Heart J 143: 418–426

    Google Scholar 

  • Corrà U, Mezzani A, Giannuzzi P, Tavazzi L (2003) Chronic heart failure-related myopathy and exercise training: a developing therapy for heart failure symptoms. Curr Probl Cardiol 28(9): 521–547

    PubMed  Google Scholar 

  • Davis A, Basset J, Hughes P, Gass GC (1983) Anaerobic threshold and lactate turnpoint. Eur J Appl Physiol 50:383–392

    CAS  Google Scholar 

  • Delp MD, Duan C, Mattson JP, Musch TI (1997) Changes in skeletal muscle biochemistry and histology relative to fiber type in rats with heart failure. J Appl Physiol 83(4): 1291–1299

    PubMed  CAS  Google Scholar 

  • Delp MD (1998) Differential effects of training on the control of skeletal muscle perfusion. Med Sci Sports Exerc 30(3): 361–374

    PubMed  CAS  Google Scholar 

  • De Sousa E, Veksler V, Bigard X, Mateo P, Ventura-Clapier R (2000) Heart failure affects mitochondrial but not myofibrillar intrinsic properties of skeletal muscle. Circulation 102(15): 1847–1853

    PubMed  Google Scholar 

  • De Sousa E, Lechene P, Fortin D, N’Guessan B, Belmadani S, Bigard X, Veksler V, Ventura-Clapier R (2002) Cardiac and skeletal muscle energy metabolism in heart failure: beneficial effects of voluntary activity. Cardiovasc Res 56(2): 260–268

    PubMed  Google Scholar 

  • Drexler H, Riede U, Munzel T, Konig H, Funke E, Just H (1992) Alterations of skeletal muscle in chronic heart failure. Circulation 85(5): 1751–1759

    PubMed  CAS  Google Scholar 

  • Dubouchaud H, Butterfield GE, Wolfel EE, Bergman BC, Brooks GA (2000) Endurance training, expression, and physiology of LDH, MCT1, and MCT4 in human skeletal muscle. Am J Physiol Endocrinol Metab 278(4): E571–E579

    PubMed  CAS  Google Scholar 

  • Dunnigan A, Staley NA, Smith SA, Pierpont ME, Judd D, Benditt DG, Benson DW Jr (1987) Cardiac and skeletal muscle abnormalities in cardiomyopathy: comparison of patients with ventricular tachycardia or congestive heart failure. J Am Coll Cardiol 10(3): 608–618

    PubMed  CAS  Google Scholar 

  • Duscha BD, Kraus WE, Keteyian SJ, Sullivan MJ, Green HJ, Schachat FH, Pippen AM, Brawner CA, Blank JM, Annex BH (1999) Capillary density of skeletal muscle: a contributing mechanism for exercise intolerance in class II–III chronic heart failure independent of other peripheral alterations. J Am Coll Cardiol 33(7): 1956–1963

    PubMed  CAS  Google Scholar 

  • Duscha BD, Annex BH, Keteyian SJ, Green HJ, Sullivan MJ, Samsa GP, Brawner CA, Schachat FH, Kraus WE (2001) Differences in skeletal muscle between men and women with chronic heart failure. J Appl Physiol 90(1): 280–286

    PubMed  CAS  Google Scholar 

  • Edwards RHT, Wilkie DR, Dawson MJ, Gordon RE, Shaw D (1982) Clinical use of nuclear magnetic resonance in the investigation of myopathy. Lancet: 725–731

    Google Scholar 

  • Ennezat PV, Malendowicz SL, Testa M, Colombo PC, Cohen-Solal A, Evans T, LeJemtel TH (2001) Physical training in patients with chronic heart failure enhances the expression of genes encoding antioxidative enzymes. J Am Coll Cardiol 38(1): 194–198

    PubMed  CAS  Google Scholar 

  • Ferguson SJ, Sorgato MC (1982) Proton electrochemical gradients and energy-transduction processes. Annu Rev Biochem 51: 185–217

    PubMed  CAS  Google Scholar 

  • Fleg JL, Pina IL, Balady GJ, Chaitman BR, Fletcher B, Lavie C, Limacher MC, Stein RA, Williams M, Bazzarre T (2000) Assessment of functional capacity in clinical and research applications: An advisory from the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Association. Circulation 102(13): 1591–1597

    PubMed  CAS  Google Scholar 

  • Foley JM, Harkema SJ, Meyer RA (1991) Decreased ATP cost of isometric contractions in ATP-depleted rat fast-twitch muscle. Am J Physiol 261: C872–C881

    PubMed  CAS  Google Scholar 

  • Forslund AH, Hambraeus L, Olsson RM, El-Khoury AE, Yu YM, Young VR (1998) The 24-h whole body leucine and urea kinetics at normal and high protein intakes with exercise in healthy adults. Am J Physiol 275: E310–E320

    PubMed  CAS  Google Scholar 

  • Foster C, Porcari JP, Cadwell K et al. (2004) Ischemic cardiovascular disease. In: LeMura LM, von Duvillard SP (eds.) Clinical exercise physiology. Lippincott Williams & Wilkins: 29–41

    Google Scholar 

  • Foster C, Porcari JP (2006) Clinical exercise testing related to cardiovascular disease. In Kaminsky LA (ed) ACSM’s Resurce Manuel for Guidelines for Exercise testing and Prescription. Lippincott Williams & Wilkins fifth edition: 225–230

    Google Scholar 

  • Francis GS, Rector TS, Cohn JN (1988) Sequential neurohumoral measurements in patients with congestive heart failure. Am Heart J 116: 1464–1468

    PubMed  CAS  Google Scholar 

  • Gamier A, Fortin D, Delomenie C, Momken I, Veksler V, Ventura-Clapier R (2003) Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. J Physiol 551: 491–501

    Google Scholar 

  • Gianuzzi P, Tavazzi L, Meyer K, Perk J, Drexler H, Dubach P, Myers J, Opasich C, Meyers J (2001) Recommendations for exercise training in chronic heart failure patients. Workging group on cardiac rehabilitation & exercise physiology and working group on heart failure of the European Society of Cardiology. European Heart J 22: 125–135

    Google Scholar 

  • Gibbons R, Balady G, Beasley J, Bricker J, Duvernoy W, Froelicher V, Mark D, Marwick T, McCallister B, Thompson P, Winters W, Yanowitz F (1997) ACC/AHA Guidelines for Exercise Testing: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Exercise Testing). J American College Cardiol 30:260–315

    CAS  Google Scholar 

  • Gordon A, Tyni-Lenne R, Persson H, Kaijser L, Hultman E, Sylven C (1996) Markedly improved skeletal muscle function with local muscle training in patients with chronic heart failure. Clin Cardiol 19(7): 568–574

    PubMed  CAS  Google Scholar 

  • Hambrecht R, Niebauer J, Fiehn E, Kalberer B, Offner B, Hauer K, Riede U, Schlierf G, Kubier K, Schuler G (1995) Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscle. J American College Cardiol 25: 1239–1249

    CAS  Google Scholar 

  • Hambrecht R, Fiehn E, Yu J, Niebauer J, Weigl C, Hilbrich L, Adams V, Riede U, Schuler G (1997) Effects of endurance training on mitochondrial ultrastructure and fiber type distribution in skeletal muscle of patients with stable chronic heart failure. J American College Cardiol 29: 1067–1073

    CAS  Google Scholar 

  • Hambrecht R, Fiehn E, Weigl C, Gielen S, Hamann C, Kaiser R, Yu J, Adams V, Niebauer J, Schuler G (1998) Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation 98: 2709–2715

    PubMed  CAS  Google Scholar 

  • Hambrecht R, Gielen S, Linke A, Fiehn E, Yu J, Walther C, Schoene N, Schuler G (2000) Effects of exercise training on left ventricular function and peripheral resistance in patients with chronic heart failure: A randomized trial. JAMA 283(23): 3095–3101

    PubMed  CAS  Google Scholar 

  • Harrington D, Coats AJ (1997) Mechanisms of exercise intolerance in congestive heart failure. Current Opinion in Cardiology 12: 224–232

    PubMed  CAS  Google Scholar 

  • Helge JW, Wu BJ, Willer M, Daugaard JR, Storlien LH, Kiens B (2001) Training affects muscle phospholipid fatty acid composition in humans. J Appl Physiol 90(2): 670–677

    PubMed  CAS  Google Scholar 

  • Hill AV, Long CNH, Lupton H (1924a) Muscular exercise, lactic acid, and the supply and utilisation of oxygen. Parts I–III. Proc R Soc Lond B 96, 438–475

    CAS  Google Scholar 

  • Hill AV, Long CNH, Lupton H (1924b) Muscular exercise, lactic acid, and the suppply and utilisation of oxygen. Parts IV–VI. Proc R Soc Lond B 97, 84–138

    CAS  Google Scholar 

  • Hofmann P, Leitner H, Gaisl G, Neuhold C (1988) Computergestützte Auswertung des modifizierten Conconi-Tests am Fahrradergometer. Leistungssport 3: 26–27

    Google Scholar 

  • Hofmann P, Leitner H, Gaisl G (1992) Heart rate threshold, lactate turn point and anaerobic threshold determination by electromyography. Hung Rev Sports Med 33(1): 13–20

    Google Scholar 

  • Hofmann P, Bunc V, Leitner H, Pokan R, Gaisl G (1994a) Heart rate threshold related to lactate turn point and steady state exercise on a cycle ergometer. Eur J Appl Physiol 69: 132–139

    CAS  Google Scholar 

  • Hofmann P, Pokan R, Preidler K, Leitner H, Szolar D, Eber B, Schwaberger G (1994b) Relationship between heart rate threshold, lactate turn point and myocardial function. Int J Sports Med 15:232–237

    PubMed  CAS  Google Scholar 

  • Hofmann P, Pokan R, Von Duvillard SP, Seibert FJ, Zweiker R, Schmid P (1997) Heart rate performance curve during incremental cycle ergometer exercise in healthy young male subjects. Med Sci Sports Exerc 29(6): 762–768

    PubMed  CAS  Google Scholar 

  • Hofmann P, von Duvillard SP, Seibert FJ, Pokan R, Wonisch M, LeMura LM, Schwaberger G (2001) %HRmax target heart rate is dependent on heart rate performance curve deflection. Med Sci Sports Exerc 33(10): 1726–1731

    PubMed  CAS  Google Scholar 

  • Hofmann P, Wonisch M, Cichozki L, Seibert F-J, Kranz S, Rom K, Pokan R, von Duvillard SP (2005a) Heart Rate Performance Curve and Arg389Gly β1-adrenoceptor Polymorphism. Med Sci Sports Exerc 37(5): S166

    Google Scholar 

  • Hofmann P, Wonisch M, Pokan R, Schwaberger G, Smekal G, von Duvillard SP (2005b) β1-Adrenoceptor Mediated Origin of the Heart rate Performance Curve Deflection. Med Sci Sports Exerc 37(10): 1704–1709

    PubMed  CAS  Google Scholar 

  • Hood DA, Parent G (1991) Metabolic and contractile responses of rat fast-twitch muscle to 10-Hz stimulation. Am J Physiol 260: C832–C840

    PubMed  CAS  Google Scholar 

  • Hoppeler H (1986) Exercise-induced ultrastructural changes in skeletal muscle. Int J Sports Med 7(4): 187–204

    PubMed  CAS  Google Scholar 

  • Hornig B, Maier V, Drexler H (1996) Physical training improves endothelial function in patients with chronic heart failure. Circulation 93(2): 210–214

    PubMed  CAS  Google Scholar 

  • Houben AJ, Beljaars JH, Hofstra L, Kroon AA, De Leeuw PW (2003) Microvascular abnormalities in chronic heart failure: a cross-sectional analysis. Microcirculation 10(6): 471–478

    PubMed  Google Scholar 

  • Howald H, Hoppeler H, Claassen H, Mathieu O, Straub R (1985) Influences of endurance training on the ultrastructural composition of the different muscle fiber types in humans. Pflugers Arch 403(4): 369–376

    PubMed  CAS  Google Scholar 

  • Howald H, Boesch C, Kreis R, Matter S, Billeter R, Essen-Gustavsson B, Hoppeler H (2002) Content of intramyocellular lipids derived by electron microscopy, biochemical assays, and (1)H-MR spectroscopy. J Appl Physiol 92(6): 2264–2272

    PubMed  CAS  Google Scholar 

  • Hunt SA, Abraham WT, Chin MH, F. A. M, F. G. S, G. T. G, Mariell J, K. M. A, M. D. M, Keith M, O. J. A, R. P. S, S. M. A, Warner SL, Y. C. W (2005) ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure). J American College Cardiol 46: 1–82

    Google Scholar 

  • Hurley BF, Nemeth PM, Martin WH, Hagberg JM, Dalsky GP, Holloszy JO (1986) Muscle triglyceride utilization during exercise: effect of training. J Appl Physiol 60(2): 562–567

    PubMed  CAS  Google Scholar 

  • Hwang JH, Pan JW, Heydari S, Hetherington HP, Stein DT (2001) Regional differences in intramyocellular lipids in humans observed by in vivo 1 H-MR spectroscopic imaging. J Appl Physiol 90(4): 1267–1274

    PubMed  CAS  Google Scholar 

  • Jackman MR, Willis WT (1996) Characteristics of mitochondria isolated from type I and type IIb skeletal muscle. Am J Physiol 270: C673–C678

    PubMed  CAS  Google Scholar 

  • Jeukendrup AE, Jentjens R (2000) Oxidation of carbohydrate feedings during prolonged exercise: current thoughts, guidelines and directions for future research Sports Med 29(6): 407–424

    PubMed  CAS  Google Scholar 

  • Jones N (1997) Clinical exercise testing. Philadelphia, W.B. Saunders Company

    Google Scholar 

  • Karlsson J, Jacobs I (1982) Onset of Blood Lactate Accumulation during Muscular Exercise as a Threshold Concept. I. Theoretical Considerations. Int J Sports Med 3: 190–201

    PubMed  CAS  Google Scholar 

  • Katz SD, Zheng H (2002) Peripheral limitations of maximal aerobic capacity in patients with chronic heart failure. J Nucl Cardiol 9(2): 215–225

    PubMed  Google Scholar 

  • Katz SD, Khan T, Zeballos GA, Mathew L, Potharlanka P, Knecht M, Whelan J (1999) Decreased activity of the L-arginine-nitric oxide metabolic pathway in patients with congestive heart failure. Circulation 99(16): 2113–2117

    PubMed  CAS  Google Scholar 

  • Kiens B, Essen-Gustavsson B, Christensen NJ, Saltin B (1993) Skeletal muscle substrate utilization during submaximal exercise in man: effect of endurance training. J Physiol (Lond) 469: 459–478

    CAS  Google Scholar 

  • Kiilavuori K, Toivonen L, Naveri H, Leinonen H (1995) Reversal of autonomic derangements by physical training in chronic heart failure assessed by heart rate variability. Eur Heart J 16(4): 490–495

    PubMed  CAS  Google Scholar 

  • Kiilavuori K, Naveri H, Salmi T, Harkonen M (2000) The effect of physical training on skeletal muscle in patients with chronic heart failure. Eur J Heart Fail 2(1): 53–63

    PubMed  CAS  Google Scholar 

  • Krüger S, Stellbrink C, Frielingsdorf J, Hermanns E, Sigmund M, Hanrath P (1998) Stellenwert der Spiroergometrie und Streßechokardiographie zur optimierten Programmierung der oberen Grenzfrequenz von Zweikammerschrittmachern. Zeitschr Kardiologie 87: 817–825

    Google Scholar 

  • Larsen AI, Lindal S, Aukrust P, Toft I, Aarsland T, Dickstein K (2002) Effect of exercise training on skeletal muscle fibre characteristics in men with chronic heart failure. Correlation between skeletal muscle alterations, cytokines and exercise capacity. Int J Cardiol 83(1): 25–32

    PubMed  Google Scholar 

  • Leitner H, Hofmann P, Gaisl G (1988) A method for the microcomputer aided determination of the anaerobic threshold by means of heart rate curve analysis. Conf. Proceedings 15 years: Biomedical Engineering in Austria 88 Graz, 9.–1. June 136–141

    Google Scholar 

  • Leitner H, Hofmann P, Leitner K (1992) Software zur Auswertung von Herzfrequenz und Laktatwerten in der Leistungsdiagnostik. Österr J Sportmed 22(4): 115–118

    Google Scholar 

  • Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J, Hoppel CL (2001) Mitochondrial dysfunction in cardiac disease: ischemia-reperfusion, aging, and heart failure. J Mol Cell Cardiol 33(6): 1065–1089

    PubMed  CAS  Google Scholar 

  • Lindsay DC, Anand IS, Bennett JG, Pepper JR, Yacoub MH, Rothery SM, Severs NJ, Poole-Wilson PA (1994) Ultrastructural analysis of skeletal muscle. Microvascular dimensions and basement membrane thickness in chronic heart failure. Eur Heart J 15(11): 1470–1466

    PubMed  CAS  Google Scholar 

  • Lindsay DC, Lovegrove CA, Dunn MJ, Bennett JG, Pepper JR, Yacoub MH, Poole-Wilson PA (1996) Histological abnormalities of muscle from limb, thorax and diaphragm in chronic heart failure. Eur Heart J 17(8): 1239–1250

    PubMed  CAS  Google Scholar 

  • Liu JL, Irvine S, Reid IA, Patel KP, Zucker IH (2000) Chronic exercise reduces sympathetic nerve activity in rabbits with pacing-induced heart failure: A role for angiotensin II. Circulation 102(15): 1854–1862

    PubMed  CAS  Google Scholar 

  • Magnusson G, Gordon A, Kaijser L, Sylven C, Isberg B, Karpakka J, Saltin B (1996) High intensity knee extensor training, in patients with chronic heart failure. Major skeletal muscle improvement. Eur Heart J 17(7): 1048–1055

    PubMed  CAS  Google Scholar 

  • Mancini DM, Walter G, Reichek N, Lenkinski R, McCully KK, Mullen JL, Wilson JR (1992) Contribution of skeletal muscle atrophy to exercise intolerance and altered muscle metabolism in heart failure. Circulation 85(4): 1364–1373

    PubMed  CAS  Google Scholar 

  • Martin WH, Dalsky GP, Hurley BF, Matthews DE, Bier DM, Hagberg JM, Rogers MA, King DS, Holloszy JO (1993) Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise. Am J Physiol 265: E708–E714

    PubMed  CAS  Google Scholar 

  • Mathony U, Schmidt H, Gröger C, Francis D, Konzag I, Müller-Werdan U, Werdan K, Syska J (2005) Optimal maximum tracking rate of dual-chamber pacemakers required by children and young adults for a maximal cardiorespiratory performance. PACE 28: 378–383

    PubMed  CAS  Google Scholar 

  • McKenzie S, Phillips SM, Carter SL, Lowther S, Gibala MJ, Tarnopolsky MA (2000) Endurance exercise training attenuates leucine oxidation and BCOAD activation during exercise in humans. Am J Physiol Endocrinol Metab 278(4): E580–E587

    PubMed  CAS  Google Scholar 

  • McLellan TM (1985) Ventilatory and plasma lactate response with different exercise protocols: A comparison of methods. Int J Sports Med 6: 30–35

    PubMed  CAS  Google Scholar 

  • Mettauer B, Zoll J, Sanchez H, Lampert E, Ribera F, Veksler V, Bigard X, Mateo P, Epailly E, Lonsdorfer J, Ventura-Clapier R (2001) Oxidative capacity of skeletal muscle in heart failure patients versus sedentary or active control subjects. J Am Coll Cardiol 38(4): 947–954

    PubMed  CAS  Google Scholar 

  • Meyer RA, Brown TR, Krilowicz BL, Kushmerick MJ (1986) Phosphagen and intracellular pH changes during contraction of creatine-depleted rat muscle. Am J Physiol 250: C264–C274

    PubMed  CAS  Google Scholar 

  • Meyer T, Scharhag J, Kindermann W (2005a) Peak oxygen uptake Myth and truth about an internationally accepted reference value. Z Kardiol 94: 255–264

    PubMed  CAS  Google Scholar 

  • Meyer T, Görge G, Schwaab B, Hildebrandt K, Walldorf J, Schäfer C, Kindermann I, Scharhag I, Kindermann W (2005b) An alternative approach for exercise prescription and efficacy testing in patients with chronic heart failure: A randomized controlled training study. Am Heart J 149(5):e1–7

    PubMed  Google Scholar 

  • Meyers J (2005) Applications of Cardiopulmonary exercise testing in the management of cardiovascular and pulmonary disease. Int J Sportsmed 26: S49–S55

    Google Scholar 

  • Miller VM, Vanhoutte PM (1988) Enhanced release of endothelium-derived factor(s) by chronic increases in blood flow. Am J Physiol 255: H446–H451

    PubMed  CAS  Google Scholar 

  • Morales-Lopez JL, Aguera E, Miro F, Galisteo AM (1990) Effects of training on fiber composition in rat gastrocnemius muscle. Biol Struct Morphog 91 3(2): 53–56

    Google Scholar 

  • Myers J (1996) Essentials of cardiopulmonary exercise testing. Champaign, Human Kinetics

    Google Scholar 

  • Nakamura M, HKPba M, Ueshima K, Arakawa N, Yoshida H, Makita S, Kawazoe K, Hiramori K (1996) Effects of mitral and/or aortic valve replacement or repair on endothelium-dependent peripheral vasorelaxation and its relation to improvement in exercise capacity. Am J Cardiol 77(1): 98–102

    PubMed  CAS  Google Scholar 

  • Nakamura M (1999) Peripheral vascular remodeling in chronic heart failure: clinical relevance and new conceptualization of its mechanisms. J Card Fail 5(2): 127–138

    PubMed  CAS  Google Scholar 

  • Näveri HK, Leinonen H, Kiilavuorl K, Härkönen M (1997) Skeletal muscle lactate accumulation and creatine phosphate depletion during heavy exercise in congestive heart failure. Eur Heart J 18: 1937–1945

    PubMed  Google Scholar 

  • Nieuwland W, Berkhuysen MA, Van Veldhuisen DJ, Rispens P (2002) Individual assessment of intensity-level for exercise training in patients with coronary artery disease is necessary. Int J Cardio 84: 15–20

    Google Scholar 

  • Nusz DJ, White DC, Dai Q, Pippen AM, Thompson MA, Walton GB, Parsa CJ, Koch WJ, Annex BH (2003) Vascular rarefaction in peripheral skeletal muscle after experimental heart failure. Am J Physiol Heart Circ Physiol 285(4): H1554–H562

    PubMed  CAS  Google Scholar 

  • Phillips SM, Green HJ, Tarnopolsky MA, Heigenhauser GF, Hill RE, Grant SM (1996) Effects of training duration on substrate turnover and oxidation during exercise. J Appl Physiol 81(5): 2182–2191

    PubMed  CAS  Google Scholar 

  • Piepoli M, Flather M, Coats AJ (1998) Overview of studies of exercise training in chronic heart failure: the need for a prospective randomised mulitcentre European trial. Europ Heart J 19: 830–841

    CAS  Google Scholar 

  • Pokan R, Hofmann P, Preidler K, Leitner H, Dusleag J, Eber B, Schwaberger G, Füger GF, Klein W (1993) Correlation between inflection of heart rate/work performance curve and myocardial function in exhaustive cycle ergometry. Eur J Appl Physiol 67: 385–388

    CAS  Google Scholar 

  • Pokan R, Hofmann P, Schumacher M, Zweiker R, Smekal G, Fruhwald FM, Gasser R, Eber B, Bachl N, Schmid P (1996) Belastungsabhängige Funktion des linken Ventrikels im Altersgang und deren Einfluss auf die Herzfrequenzleistungskurve. Z Kardiol 85(5): 364

    Google Scholar 

  • Pokan R, Hofmann P, von Duvillard SP, Beaufort F, Schumacher M, Fruhwald FM, Zweiker R, Eber B, Gasser R, Brandt D, Smekal G, Klein W, Schmid P (1997) Left ventricular function in response to the transition from aerobic to anaerobic metabolism. Med Sci Sports Exerc 29(8): 1040–1047

    PubMed  CAS  Google Scholar 

  • Pokan R, Hofmann P, von Duvillard SP, Beaufort F, Smekal G, Gasser R, Eber B, Bachl N, Schmid P (1998) The heart rate performance curve and left ventricular function during exercise in patients after myocardial infarction. Med Sci Sports Exerc 30(10): 1475–1480

    PubMed  CAS  Google Scholar 

  • Pokan R, Hofmann P, von Duvillard SP, Rohrer A, Smekal G, Fruhwald FM, Schmid P, Brand D, Gasser R, Bachl N (2000) Exercise testing in patients with cardiovascular disease —Lactate turn points vs. gas exchange variables. Med Sci Sports Exerc 32(5): S143

    Google Scholar 

  • Pokan R, Hofmann P, Wonisch M, Smekal G, Bachl N, Mayr K, Benzer W, Schmid P (2004) Leistungsdiagnostik und Trainingsherzfrequenzbestimmung in der kardiologischen Rehabilitation. J Kardiol 11(11): 446–452

    Google Scholar 

  • Pokan R, Hofmann P, von Duvillard SP, Smekal G, Wonisch M, Lettner K, Bachl N, Schmid P (2006) Oral magnesium therapy, exercise heart rate, exercise tolerance, and myocardial function in coronary artery disease patients. Br J Sports Med 40: 773–778

    PubMed  CAS  Google Scholar 

  • Pollock ML, Franklin BA, Balady GJ, Chaitman BL, Fleg JL, Fletcher B, Limacher M, Pina IL, Stein RA, Williams M, Bazzarre T (2000) AHA Science Advisory. Resistance exercise in individuals with and without cardiovascular disease: benefits, rationale, safety, and prescription: An advisory from the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Association; Position paper endorsed by the American College of Sports Medicine. Circulation 101(7): 828–833

    PubMed  CAS  Google Scholar 

  • Poole-Wilson PA, Ferrari R (1996) Role of skeletal muscle in the syndrome of chronic heart failure. J Mol Cell Cardiol 28(11): 2275–2285

    PubMed  CAS  Google Scholar 

  • Pothoff G, Winter UJ, Wassermann K, Jäkel D, Steinbach M (1994) Ergospirometrische Normalkollektivuntersuchungen für ein Unsteady-state-Stufentestprogramm. Zeitschr Kardiologie 83: 116–123

    CAS  Google Scholar 

  • Pu CT, Johnson MT, Forman DE, Hausdorff JM, Roubenoff R, Foldvari M, Fielding RA, Singh MA (2001) Randomized trial of progressive resistance training to counteract the myopathy of chronic heart failure. J Appl Physiol 90(6): 2341–2350

    PubMed  CAS  Google Scholar 

  • Richardson RS (1998) Oxygen transport: air to muscle cell. Med Sci Sports Exerc 30(1): 53–59

    PubMed  CAS  Google Scholar 

  • Roden M (2004) Diabetes mellitus — Definition, Klassifikation und Diagnose. Acta Medica Austriaca 31(5): 156–157

    PubMed  Google Scholar 

  • Rodman JR, Haverkamp HC, Gordon SM, Dempsey JA (2002) Cardiovascular and Respiratory System Responses and Limitations to Exercise. Clinical Exercise Testing. I.M. Weisman and R.J. Zeballos. Basel, Karger. 32: 1–17

    Google Scholar 

  • Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol 265: E380–E391

    PubMed  CAS  Google Scholar 

  • Romijn JA, Coyle EF, Sidossis LS, Rosenblatt J, Wolfe RR (2000) Substrate metabolism during different exercise intensities in endurance-trained women. J Appl Physiol 88(5): 1707–1714

    PubMed  CAS  Google Scholar 

  • Rowell L (1988) Muscle blood flow in humans: how high can it go? 20: S97–S103

    CAS  Google Scholar 

  • Saltin B (1985) Haemodynamic adaptations to exercise. American J Cardiol 55: 42D–47D

    CAS  Google Scholar 

  • Samek L et al. (1982) Grundlagen der Bewegungstherapie nach Herzoperation. In: Weidmann H, Samek L (eds.) Bewegungstherapie in der Kardiologie — Eine Bestandsaufnahme, Steinkopf Verlag, Darmstadt, Seite 84

    Google Scholar 

  • Santoro C, Cosmas A, Forman D, Morghan A, Bairos L, Levesque S, Roubenoff R, Hennessey J, Lamont L, Manfredi T (2002) Exercise training alters skeletal muscle mitochondrial morphometry in heart failure patients. J Cardiovasc Risk 9(6): 377–381

    PubMed  Google Scholar 

  • Schaufelberger M, Eriksson BO, Held P, Swedberg K (1996) Skeletal muscle metabolism during exercise in patients with chronic heart failure. Heart 76(1): 29–34

    PubMed  CAS  Google Scholar 

  • Schaufelberger M, Eriksson BO, Grimby G, Held P, Swedberg K (1997) Skeletal muscle alterations in patients with chronic heart failure. Eur Heart J 18(6): 971–980

    PubMed  CAS  Google Scholar 

  • Severinghaus JW (2000) Oxygen transport in blood and to mitochondria. In: Saltin B, Boushel R, Secher N, Mitchel J (eds) Exercise and circulation in health and disease. 169–174

    Google Scholar 

  • Sherman WM (1992) Recovery from endurance exercise. Med Sci Sports Exerc 24(9 Suppl): S336–S339

    PubMed  CAS  Google Scholar 

  • Sial S, Coggan AR, Hickner RC, Klein S (1998) Training-induced alterations in fat and carbohydrate metabolism during exercise in elderly subjects. Am J Physiol 274: E785–E790

    PubMed  CAS  Google Scholar 

  • Simonini A, Long CS, Dudley GA, Yue P, McElhinny J, Massie BM (1996) Heart failure in rats causes changes in skeletal muscle morphology and gene expression that are not explained by reduced activity. Circ Res 79(1): 128–136

    PubMed  CAS  Google Scholar 

  • Simonini A, Chang K, Yue P, Long CS, Massie BM (1999) Expression of skeletal muscle sarcoplasmic reticulum calcium-ATPase is reduced in rats with postinfarction heart failure. Heart 81(3): 303–307

    PubMed  CAS  Google Scholar 

  • Simonton CA, Higginbotham MB, Cobb FR (1988) The ventilatory threshold: Quantitative analysis of reproducibility and relation to arterial lactate concentration in normal subjects and in patients with chronic congestive heart failure. Am J Cardiol 62: 100–107

    PubMed  CAS  Google Scholar 

  • Skinner JS, McLellan TH (1980) The Transition from Aerobic to Anaerobic Metabolism. Res Q Exerc Sport 51: 234–248

    PubMed  CAS  Google Scholar 

  • Smart N, Marwick TH (2004) Exercise training for patients with heart failure: a systematic review of factors that improve mortality and morbidity. Am J Med 116(10): 693–706

    PubMed  Google Scholar 

  • Spangenburg EE, Talmadge RJ, Musch TI, Pfeifer PC, McAllister RM, Williams JH (2002) Changes in skeletal muscle myosin heavy chain isoform content during congestive heart failure. Eur J Appl Physiol 87(2): 182–186

    PubMed  CAS  Google Scholar 

  • Starritt EC, Angus D, Hargreaves M (1999) Effect of short-term training on mitochondrial ATP production rate in human skeletal muscle. J Appl Physiol 86(2): 450–454

    PubMed  CAS  Google Scholar 

  • Stratton J, Dunn J, Adamopoulos S, Kemp G, Coats A, Rajagopalan B (1994) Training partially reverses skeletal muscle metabolic abnormalities during exercise in heart failure. J Applied Physiol 76: 1575–1582

    CAS  Google Scholar 

  • Strzelczyk TA, Quigg RJ, Pfeifer PB, Parker MA, Greenland P (2001) Accuracy of estimating exercise prescription intensity in patients with left ventricular systolic dysfunction. J Cardiopulm Rehabil 21(3): 158–163

    PubMed  CAS  Google Scholar 

  • Sullivan MJ, Green HJ, Cobb FR (1990) Skeletal muscle biochemistry and histology in ambulatory patients with long-term heart failure. Circulation 81(2): 518–527

    PubMed  CAS  Google Scholar 

  • Sullivan M, Higginbotham M, Cobb F (1998) Exercise training in patients with severe left ventricular dysfunction: hemodynamic and metabolic effects. Circulation 78: 506–515

    Google Scholar 

  • Suter E, Hoppeler H, Claassen H, Billeter R, Aebi U, Horber F, Jaeger P, Marti B (1995) Ultrastructural modification of human skeletal muscle tissue with 6-month moderate-intensity exercise training. Int J Sports Med 16(3): 160–166

    PubMed  CAS  Google Scholar 

  • Swedberg KJ, Cleland H, Dargie H, Drexler F, Follath M, Komajda L, Tavazzi, Simseth OA (2005) Guidelines for the diagnosis and treatment of chronic heart failure: executive summary (update 2005). Europ Heart J 26: 1115–1140

    Google Scholar 

  • Tabet JY, Meurin P, ben Driss A, Thabut G, Weber H, Renaud N, Odjinkem N, Solal AC (2006) Determination of exercise training heart rate in patients on betablockers after myocardial infarction. Eur J Cardiovasc Prev Rehabil 13(4): 538–543

    PubMed  Google Scholar 

  • Tanaka H, Monahan K, Seals D (2001) Age-predicted maximal heart rate revisited. J American College Cardiol 37: 153–156

    CAS  Google Scholar 

  • Tarnopolsky MA, Atkinson SA, MacDougall JD, Chesley A, Phillips S, Schwarcz HP (1992) Evaluation of protein requirements for trained strength athletes. J Appl Physiol 73(5): 1986–1995

    PubMed  CAS  Google Scholar 

  • Tegtbur U, Busse M, Braumann K (1993) Estimation of an individual equilibrium between lactate production and catabolism during exercise. Med Sci Sports Exerc 25(8): 620–627

    PubMed  CAS  Google Scholar 

  • Tegtbur U, Meyer H, Machold H, Busse MW (2002) Belastungsdiagnostische Kenngrößen und Katecholamine bei Koronarpatienten. Z Kardiol 91: 927–936

    PubMed  CAS  Google Scholar 

  • Turcotte LP, Richter EA, Kiens B (1992) Increased plasma FFA uptake and oxidation during prolonged exercise in trained vs. untrained humans. Am J Physiol 262: E791–E799

    PubMed  CAS  Google Scholar 

  • Tyni-Lenne R, Gordon A, Jansson E, Bermann G, Sylven C (1997) Skeletal muscle endurance training improves peripheral oxidative capacity, exercise tolerance, and health-related quality of life in women with chronic congestive heart failure secondary to either ischemic cardiomyopathy or idiopathic dilated cardiomyopathy. Am J Cardiol 80(8): 1025–1029

    PubMed  CAS  Google Scholar 

  • van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJ (2001) The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol 536: 295–304

    PubMed  Google Scholar 

  • Ventura-Clapier R, Kaasik A, Veksler V (2004) Structural and functional adaptations of striated muscles to CK deficiency. Mol Cell Biochem 256–257(1–2): 29–41

    PubMed  Google Scholar 

  • Vescovo G, Ceconi C, BernocHKP P, Ferrari R, Carraro U, Ambrosio GB, Libera LD (1998) Skeletal muscle myosin heavy chain expression in rats with monocrotaline-induced cardiac hypertrophy and failure. Relation to blood flow and degree of muscle atrophy. Cardiovasc Res 39(1): 233–241

    PubMed  CAS  Google Scholar 

  • Vescovo G, Volterrani M, Zennaro R, Sandri M, Ceconi C, Lorusso R, Ferrari R, Ambrosio GB (2000) Dalla Libera Apoptosis in the skeletal muscle of patients with heart failure: investigation of clinical and biochemical changes. Heart 84(4): 431–437

    PubMed  CAS  Google Scholar 

  • Vescovo G, Ambrosio GB, Dalla Libera L (2001) Apoptosis and changes in contractile protein pattern in the skeletal muscle in heart failure. Acta Physiol Scand 71(3): 305–310

    Google Scholar 

  • Vock R, Weibel ER, Hoppeler H, Ordway G, Weber JM, Taylor CR (1996) Design of the oxygen and substrate pathways. V. Structural basis of vascular substrate supply to muscle cells. J Exp Biol 199: 1675–1688

    PubMed  CAS  Google Scholar 

  • Wagenmakers AJM, Meckers EJ, Brouns F, Kuipers H, Soeters PB, van der Vusse GJ, Saris WH (1991) Carbohydrate supplementation, glycogen depletion, and amino acid metabolism during exercise. Am J Physiol 260: E883–E890

    PubMed  CAS  Google Scholar 

  • Wagenmakers AJ, Brouns F, Saris WH, Halliday D (1993) Oxidation rates of orally ingested carbohydrates during prolonged exercise in men. J Appl Physiol 75(6): 2774–2780

    PubMed  CAS  Google Scholar 

  • Wagenmakers AJ (1998) Muscle amino acid metabolism at rest and during exercise: role in human physiology and metabolism. Exerc Sport Sci Rev 26: 287–314

    PubMed  CAS  Google Scholar 

  • Wasserman K, McIlroy MB (1964) Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol 14: 844–852

    PubMed  CAS  Google Scholar 

  • Wassermann K, Hansen J, Sue D, Whipp B, Casaburi R (1994) Principles of exercise testing and interpretation. Philadelphia, Williams and Wilkins

    Google Scholar 

  • Watchko JF, Daood MJ, LaBella JJ (1996) Creatine kinase activity in rat skeletal muscle relates to myosin phenotype during development. Pediatr Res 40(1): 53–58

    PubMed  CAS  Google Scholar 

  • Weston SB, Gabbet J (2001) Reproducibility of ventilation of thresholds in trained cyclists during ramp cycle exercise. J Sci Med Sport 4(3): 357–366

    PubMed  CAS  Google Scholar 

  • Wibom R, Hultman E, Johansson M, Matherei K, Constantin-Teodosiu D, Schantz PG (1992) Adaptation of mitochondrial ATP production in human skeletal muscle to endurance training and detraining. J Appl Physiol 73(5): 2004–2010

    PubMed  CAS  Google Scholar 

  • Williams AD, Selig S, Hare DL, Hayes A, Krum H, Patterson J, Geerling RH, Toia D, Carey MF (2004) Reduced exercise tolerance in CHF may be related to factors other than impaired skeletal muscle oxidative capacity. J Card Fail 10(2): 141–148

    PubMed  CAS  Google Scholar 

  • Wonisch M, Brandt D, Fruhwald FM, Hofmann P, Klein W, Maier R, Pokan R, Watzinger N (2004) Aktuelle Evidenz von körperlichem Training bei Herzinsuffizienz — Ist Sport das bessere Medikament? J Kardiologie 11: 441–445

    Google Scholar 

  • Wonisch M, Hofmann P, Fruhwald FM, Hoedl R, Schwaberger G, Pokan R, von Duvillard SP, Klein W (2002) Effect of β1-selective adrenergic blockade on maximal lactate steady state in healthy men. Eur J Appl Physiol 87: 66–71

    PubMed  CAS  Google Scholar 

  • Wonisch M, Fruhwald FM, Hödl R, Hofmann P, Klein W, Kraxner W, Maier R, Pokan R, Smekal G, Watzinger N (2003a) Spiroergometrie in der Kardiologie — Grundlagen der Physiologie und Terminologie. J Kardiologie 10(9): 383–390

    Google Scholar 

  • Wonisch M, Hofmann P, Fruhwald FM, Kraxner W, Hodl R, Pokan R, Klein W (2003b) Influence of beta-blocker use on percentage of target heart rate exercise prescription. Europ J Cardiovascular Prevention & Rehabilitation 10(4): 296–301

    Google Scholar 

  • Wonisch M, Pokan R, Hofmann P (2004) Funktionsdiagnostik akuter und chronischer Anpassung der Atmungsorgane an körperliche Belastung. Kompendium der Sportmedizin. R. Pokan, H. Förster, P. Hofmann et al. Wien New York, Springer: 133–144

    Google Scholar 

  • Wonisch M, Lercher P, Scherr D, Maier R, Pokan R, Hofmann P, von Duvillard SP (2005a) Influence of permanent right ventricular pacing on cardiorespiratory exercise parameters in chronic heart failure patients with implanted cardioverter defibrillators. Chest 127(3): 787–793

    PubMed  Google Scholar 

  • Wonisch M, Pokan R, Fruhwald FM, Watzinger N, Maier R, Kraxner W, Hödl R, Hofmann P, Klein W (2005b) Betabiocker und Sport — Auswirkungen auf Parameter der Leistungsfähigkeit und der Trainingsgestaltung. Internistische Praxis 45: 241–248

    Google Scholar 

  • Zucker IH, Patel KP, Schultz HD, Li YF, Wang W, Pliquett RU (2004) Exercise training and sympathetic regulation in experimental heart failure. Exerc Sport Sci Rev 32(3): 107–111

    PubMed  Google Scholar 

Übersichtsartikel

  • Corrà U, Mezzani A, Giannuzzi P, Tavazzi L (2003) Chronic heart failure-related myopathy and exercise training: a developing therapy for heart failure symptoms. Curr Probl Cardiol 28(9): 521–547

    PubMed  Google Scholar 

  • Kindermann M, Meyer T, Kindermann W, Nickening G (2003) Körperliches Training bei Herzinsuffizienz. Herz 2: 153–165

    Google Scholar 

  • Lunde PK, Sjaastad I, SHKPotz Thorud HM, Sejersted OM (2001) Skeletal muscle disorders in heart failure. Acta Physiol Scand 171(3): 277–294

    PubMed  CAS  Google Scholar 

  • Piepoli MF, Scott AC, Capucci A, Coats AJ (2001) Skeletal muscle training in chronic heart failure. Acta Physiol Scand 171(3): 295–303

    PubMed  CAS  Google Scholar 

  • Pollock ML, Franklin BA, Balady GJ, Chaitman BL, Fleg JL, Fletcher B, Limacher M, Pina IL, Stein RA, Williams M, Bazzarre T (2000) AHA Science Advisory. Resistance exercise in individuals with and without cardiovascular disease: benefits, rationale, safety, and prescription: An advisory from the Committee on Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Association; Position paper endorsed by the American College of Sports Medicine. Circulation 101(7): 828–833

    PubMed  CAS  Google Scholar 

  • Smart N, Marwick TH (2004) Exercise training for patients with heart failure: a systematic review of factors that improve mortality and morbidity. Am J Med 116(10): 693–706

    PubMed  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag/Wien

About this chapter

Cite this chapter

(2009). Literatur. In: Pokan, R., et al. Kompendium der kardiologischen Prävention und Rehabilitation. Springer, Vienna. https://doi.org/10.1007/978-3-211-69390-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-69390-2_17

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-29134-4

  • Online ISBN: 978-3-211-69390-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics