Skip to main content

Very large internal waves in the ocean — observations and nonlinear models

  • Chapter
Waves in Geophysical Fluids

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 489))

Abstract

This chapter describes the observations and modelling of very large internal waves in the ocean. We begin with a brief description of the dead-water phenomenon explained by Nansen, and the internal tides discovered by Pettersson. We continue by describing the very large oceanic solitary internal waves of depression observed in the field from 1965 and onwards. The main point of the mathematical analysis is to model the formation and propagation properties of the waves. Tidal generation of internal undular bores and solitary waves of amplitude comparable to the surface layer thickness at rest are exemplified by numerical simulations. The fully nonlinear and fully dispersive mathematical and numerical modelling is found to reproduce the wave motion taking place in the ocean, including the excursions of the mixed upper layer as large as 4–5 times the level at rest, as in the COPE experiment. The interface method — derived in two and three dimensions — is found to compare well with laboratory measurements of the waves using Particle Image Velocimetry. A fully nonlinear theory that accounts for the continuously stratified motion within the pycnocline is derived. The method is used to support experiments on internal wave breaking governed by shear. The latter model is also useful to compute internal wave motion when the upper part of the ocean is linearly stratified. The fully nonlinear modelling is put into perspective by deriving in parallel the weakly nonlinear Korteweg-de Vries, Benjamin-Ono and intermediate long wave equations. Recent observations in deep water reveal significant internal wave motion and corresponding strong bottom currents of magnitude about 0.5 m/s where the pycnocline meets the shelf slope. Future directions of internal wave research are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • G. Alendal, J. Berntsen, E. Engum, G. K. Furnes, G. Kleiven and L. L Eide (2005). Influence from ‘Ocean Weather’ on near seabed currents and events at Ormen Lange. Marine and Petroleum Geology Vol. 22, 21–31.

    Article  Google Scholar 

  • C. J. Amick and R. E. L. Turner (1986). A global theory of internal solitary waves in two-fluid systems. Trans. Am. Math. Soc, Vol. 298, 431–84.

    Article  MATH  MathSciNet  Google Scholar 

  • J. R. Apel (1978). Observations of Internal-Wave Surface Signatures in ASTP Photographs, pp. 505–509, in: Apollo-Soyuz Test Project. Summary Science Report. Vol. II, NASA SP, Washington, Scientific and Technical Inf.

    Google Scholar 

  • J. R. Apel, H. M. Byrne, J. R. Proni and R. L. Charnell (1975). Observations of oceanic internal and surface waves from the Earth Resources Technology Satellite. J. Geophys. Res. Vol. 80(6), 865–81.

    Google Scholar 

  • J. R. Apel, J. R. Holbrook, A. K. Liu and J. Tsai (1985). The Sulu Sea internal soliton experiment. J. Phys. Oceanogr. Vol. 15, 1625–51.

    Article  Google Scholar 

  • L. Armi and D. M. Farmer (1988). Flow of Mediterranean water through the Strait of Gibraltar. D. M. Farmer and L. Armi (1988). Flow of Atlantic water through the Strait of Gibraltar. Prog, in Oceanogr. Vol. 21, 1–105.

    Google Scholar 

  • T. B. Benjamin (1967). Internal waves of permanent form in fluids of great depth. J. Fluid Mech., Vol. 29, 559–92.

    Article  MATH  Google Scholar 

  • D. J. Benney (1966). Long nonlinear waves in fluid flows. J. Math. Phys. Vol. 45, 52–63.

    MATH  MathSciNet  Google Scholar 

  • J. Berntsen and G. K. Furnes (2005). Internal pressure errors in sigma-coordinate ocean models — sensivity of the growth of the flow to the time stepping method and possible non-hydrostatic effets. Cont. Shelf Res. Vol. 25, 829–48.

    Article  Google Scholar 

  • V. I. Byshev, Yu. A. Ivanov and Ye. G. Morozov (1971). Study of temperature fluctuations in the frequency range of internal gravity waves. Izv. Atmos. Ocean. Phys. Vol. 7(1), 25–30.

    Google Scholar 

  • M. Carr and P. A. Davies (2006). The motion of an internal solitary wave of depression over a fixed bottom boundary in a shallow, two-layer fluid. Phys. Fluids Vol. 18, 016601-1–10.

    Article  MathSciNet  Google Scholar 

  • W. Choi and R. Camassa (1999). Fully nonlinear internal waves in a two-fluid system. J. Fluid Mech. Vol. 396, 1–36.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Cummins, S. Vagle, L. Armi and D. M. Farmer (2003). Proc. R. Soc. Lond. A. Vol. 459, 1467–87.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Defant (1961). Physical Oceanography. Vol. II. Pergamon. 598 pp.

    Google Scholar 

  • J. O. Dickey, P. L. Bender, J. E. Faller, X. X. Newhall, R. L. Ricklefs, J. G. Ries, P. J. Shelus, C. Veillet, A. L. Whipple, J. R. Wiant, J. G. Wilhams and C. F. Yoder (1994). Lunar Laser Ranging: A Continuing Legacy of the Apollo Program. Science, Vol. 265, 482–90.

    Article  Google Scholar 

  • J. W. Dold and D. H. Peregrine (1985), in: Numerical Methods for Fluid Dynamics, 2, Ed. K. W. Morton and M. J. Baines, Clarenden Press, Oxford, pp. 671–9.

    Google Scholar 

  • P. G. Drazin and R. S. Johnson (1989). Solitons: an introduction. Camb. Univ. Press. 226 pp.

    Google Scholar 

  • M. L. Dubreil-Jacotin (1932). Sur les ondes type permanent dans les liquides heterogenes. Atti della Reale Academia Nationale dei Lincei Vol. 15(6), 814–9.

    MATH  Google Scholar 

  • T. F. Duda and D. M. Farmer (1999), The 1998 WHOI/IOS/ONR Internal Solitary Wave Workshop: Contributed Papers, Woods Hole Oceanographic Inst. 247 pp.

    Google Scholar 

  • V. W. Ekman (1904). On dead water: the Norwegian north polar expedition 1893–1896. Scientific Results. Edited by F. Nansen. Ch. XV, A. W. Brøgger. Christiania. 152 pp. and appendix with 17 pi.

    Google Scholar 

  • A. Eliassen (1982). Vilhelm Bjerknes and his students. Ann. Rev. Fluid Mech. Vol. 14, 1–11.

    Article  Google Scholar 

  • W. A. Evans and M. J. Ford (1996). An integral equation approach to internal (2-layer) solitary waves. Phys. Fluids Vol. 8, 2032–47.

    Article  MATH  MathSciNet  Google Scholar 

  • G. Ewing (1950). Slicks, surface films and internal waves. J. Mar. Res. Vol. 9(3), 161–87.

    Google Scholar 

  • D. M. Farmer and L. Armi (1999a). In: The 1998 WHOI/IOS/ONR Internal Solitary Wave Workshop: Contributed Papers, Woods Hole Oceanographic Inst. Ed. by T. F. Duda and D. M. Farmer, pp. 188–92.

    Google Scholar 

  • D. M. Farmer and L. Armi (1999b). Stratified fiow over topography: the role of small-scale entrainment and mixing in flow establishment. Proc. R. Soc. Lond. A. Vol. 455, 3221–58.

    MATH  MathSciNet  Google Scholar 

  • B. Franklin (1762). Behaviour of oil on water. Letter to John Pringle. Philadelphia. Dec. 1 1762. In: Experiments and observations on electricity, London 1769, 142–4.

    Google Scholar 

  • D. Fructus and J. Grue (2004). Fully nonlinear solitary waves in a layered stratified fluid. J. Fluid Mech. Vol. 505, 323–47.

    Article  MATH  MathSciNet  Google Scholar 

  • D. Fructus, D. Clamond, J. Grue and Ø. Kristiansen (2005). An efficient model for three-dimensional surface wave simulations. Part I Free space problems. J. Comp. Phys. Vol. 205, 665–85.

    Article  MATH  MathSciNet  Google Scholar 

  • C. S. Gardner, J. M. Green, M. D. Kruskal and R. M. Miura (1967). Method for solving the Korteweg-de Vries equation and generalizations. Phys. Rev. Lett. 19, 1095–7.

    Article  MATH  Google Scholar 

  • A. E. Gargett and B. A. Hughes (1972). On the interaction of surface and internal waves. J. Fluid Mech. Vol. 52, 179–91.

    Article  MATH  Google Scholar 

  • R. D. Gaul (1961). Observations of internal waves near Hudson Canyon. J. Geophys. Res. Vol. 66(11), 3821–30.

    Google Scholar 

  • J. Grue (2002). On four highly nonlinear phenomena in wave theory and marine hydrodynamics. Appl. Ocean Res. Vol. 24, 261–74.

    Article  Google Scholar 

  • J. Grue (2004). Internal wave fields analyzed by imaging velocimetry. Chap. 6 in PIV and Water Waves., World Scientific,J. Grue and P. L.-F. Liu and G. K. Pedersen (Eds.), 239–78.

    Google Scholar 

  • J. Grue (2005). Generation, propagation and breaking of internal solitary waves. Chaos Vol. 15, 037110-1–14.

    Article  MathSciNet  Google Scholar 

  • J. Grue, H. A. Friis, E. Palm and P.-O. Rusas (1997). A method for computing unsteady fully nonlinear interfacial waves. J. Fluid Mech. Vol. 351, 223–52.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Grue, A. Jensen, P.-O. Rusas and J. K. Sveen (1999). Properties of large-amplitude internal waves. J. Fluid Mech. Vol. 380, 257–78.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Grue, A. Jensen, P.-O. Rusås and J. K. Sveen (2000). Breaking and broadening of internal solitary waves. J. Fluid Mech. Vol. 413, 181–217.

    Article  MATH  MathSciNet  Google Scholar 

  • D. Halpern (1971). Observations on short-period internal waves in Massachusetts Bay. J. Mar. Res. Vol. 29, 116–33.

    Google Scholar 

  • L. R. Haury, M. G. Briscoe and M. H. Orr (1979). Tidally generated internal wave packets in Massachusetts Bay. Nature Vol. 278, 312–7.

    Article  Google Scholar 

  • K. R. Helfrich (1992). Internal solitary wave breaking and run-up on a uniform slope. J. Fluid Mech. Vol. 243, 133–54.

    Article  Google Scholar 

  • K. R. Helfrich and W. K. Melville (2006). Long nonlinear internal waves. Annu. Rev. Fluid Mech. Vol. 38, 395–425.

    Article  MathSciNet  Google Scholar 

  • P. E. Holloway, E. Pelinovsky, T. Talipova and B. Barnes (1997). A nonlinear model of internal tide transformation on the Australian north west shelf. J. Phys. Oceanogr. Vol. 27, 871–96.

    Article  Google Scholar 

  • P. Hosegood and H. van Haren (2004). Near-bed solibores over the continental slope in the Faeroe-Shetland Channel. Deep-Sea Res. II Vol. 51, 2943–71.

    Article  Google Scholar 

  • B. A. Hughes (1978). The effect of internal waves on surface wind waves. 2. Theoretical analysis. J. Geophys. Res. Vol. 83(C1), 455–65.

    Google Scholar 

  • B. A. Hughes and J. F. R. Gower (1983). SAR imagery and surface truth comparisons of internal waves in Georgia Strait, British Columbia, Canada J. Geophys. Res. Vol. 88(C3), 1809–24.

    Google Scholar 

  • B. A. Hughes and H. L. Grant (1978). The effect of internal waves on surface wind waves. 1. Experimental measurements, J. Geophys. Res. Vol. 83(C1), 443–54.

    Google Scholar 

  • The Internal Wave Atlas, “http://atlas.cms.udel.edu/search.html” (1998).

    Google Scholar 

  • R. I. Joseph (1977). Solitary waves in a finite depth fluid. J. Phys. A: Math. Gen. Vol. 10, L225–7.

    Article  Google Scholar 

  • T. W. Kao, F.-S. Pan and D. Renouard (1985). Internal solitons on the pycnocline: generation, propagation, and shoahng and breaking over a slope. J. Fluid Mech. Vol. 159, 19–53.

    Article  Google Scholar 

  • G. H. Keulegan (1953). Characteristics of internal solitary waves. J. Res. Natl. Bureau of Standards Vol. 51, 133–40.

    MATH  Google Scholar 

  • C. G. Koop and G. Butler (1981). An investigation of internal solitary waves in a twofluid system. J. Fluid Mech. Vol. 112, 225–51.

    Article  MATH  MathSciNet  Google Scholar 

  • D. J. Korteweg and G. de Vries (1895). On the change of form of long waves and advancing waves. Philos. Mag. Vol. 39(5), 422–43.

    Google Scholar 

  • R. A. Kropfli, L. A. Ostrovsky, T. P. Stanton, E. A. Skirta, A. N. Keane and V. Irosov (1999). Relationships between strong internal waves in the coastal zone and their radar and radiometric signatures. J. Geophys. Res. [Oceans] Vol. 104, 3133–48.

    Article  Google Scholar 

  • T. Kubota, D. R. S. Ko and L. D. Dobbs (1978). Weakly-nonlinear long internal waves in a stratified fluid of finite depth. J. Hydronautics Vol. 12, 157–65.

    Google Scholar 

  • E. C. Lafond (1966). Internal waves. In: Encyclopedia of oceanography. New York: Reinold Publ., pp. 402–8.

    Google Scholar 

  • K. G. Lamb (1994). Numerical experiments of internal wave generation by strong tidal flow across a finite amplitude bank edge. J. Geophys. Res. Vol. 99(C1), 843–64.

    Article  Google Scholar 

  • K. G. Lamb (2004). On boundary-layer separation and internal wave generation at the Knight Inlet sill. Proc. R. Soc. Lond. A. Vol. 460, 2305–37.

    MATH  MathSciNet  Google Scholar 

  • K. G. Lamb and L. Yan (1996). The evolution of internal wave undular bores: comparison of a fully-nonlinear numerical model with weakly nonlinear theories. J. Phys. Oceanogr. Vol. 26,(2), 2712–34.

    Article  Google Scholar 

  • P. D. Lax (1968). Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. Vol. 21, 467–90.

    Article  MATH  MathSciNet  Google Scholar 

  • C.-Y. Lee and R. C. Beardsley (1974). The generation of long internal waves in a weakly stratified shear flow. J. Geophys. Res. Vol. 79,(3), 453–62.

    Google Scholar 

  • O. S. Lee (1961). Observations of internal waves in shallow water. Limnol. Oceanogr. Vol. 6(3), 312–21.

    Google Scholar 

  • S. Legg and A. Adcroft (2003). Internal wave breaking at concave and convex continental slopes. J. Phys. Oceanogr. Vol. 33, 2224–46.

    Article  MathSciNet  Google Scholar 

  • C. E. Lennert-Cody and P. J. S. Pranks (1999). In: The 1998 WHOI/IOS/ONR Internal Solitary Wave Workshop: Contributed Papers, Woods Hole Oceanographic Inst. Ed. by T. F. Duda and D. M. Farmer, pp. 69–72.

    Google Scholar 

  • R. R. Long (1956). Solitary waves in one-and two-fluid systems. Tellus Vol. 8, 460–71.

    Google Scholar 

  • M. S. Longuet-Higgins and R. W. Stewart (1961). The changes in amplitude of short gravity waves on steady non-uniform currents. J. Fluid Mech. Vol. 10, 529–49.

    Article  MATH  MathSciNet  Google Scholar 

  • T. Maxworthy (1979). A note on the internal solitary waves produced by tidal flow over a three-dimensional ridge. J. Geophys. Res. Vol. 84(C1), 338–46.

    Article  Google Scholar 

  • W. K. Melville and K. R. Helfrich (1987). Transcritical two-layer flow over topography. J. Fluid Mech. Vol. 178, 31–52.

    Article  Google Scholar 

  • J. W. Miles (1979). On internal solitary waves. Tellus Vol. 31, 456–62.

    MathSciNet  Google Scholar 

  • J. W. Miles (1981). On internal solitary waves II. Tellus Vol. 33, 397–401.

    Article  MathSciNet  Google Scholar 

  • E. G. Morozov, K. Trulsen, M. G. Velarde and V. I. Vlasenko (2002). Internal tides in the Strait of Gibraltar. J. Phys. Oceanogr. Vol. 32, 3193–206.

    Article  Google Scholar 

  • J. N. Moum, D. M. Farmer, W. D. Smyth, L. Armi and S. Vagle (2003). Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. J. Phys. Oceangr. Vol. 33, 2093–112.

    Article  Google Scholar 

  • W. Munk and C. Wunsch (1998). Abyssal Recipes II: energetics of tidal and wind mixing. Deep Sea Res. Vol. 45, 1976–2009.

    Article  Google Scholar 

  • A. New, K. R. Dyer and R. E. Lewis (1987). Internal waves and intense mixing periods in a partially stratified estuary. Estuarine, Coastal and Shelf Science, Vol. 24, 15–33.

    Article  Google Scholar 

  • F. Nansen (1902). The oceanography of the North Polar Basin. Norwegian North Polar Expedition 1893–1896, Scientific Results, Vol. 3, no. 9, 427 pp. Christiania. Longmans, Green & Co. London.

    Google Scholar 

  • H. Ono (1975). Algebraic solitary waves on stratified fiuids. J. Phys. Soc. Japan Vol. 39, 1082–91.

    MathSciNet  Google Scholar 

  • A. R. Osborne and T. L. Burch (1980). Internal solitons in the Andaman Sea. Science Vol. 208(4443), 451–60.

    Article  Google Scholar 

  • A. R. Osborne, T. L. Burch and R. I. Scarlet (1978). The influence of internal waves on deep-water drilling. J. Pet. Tech. Vol. 30, 1497–504.

    Google Scholar 

  • L. A. Ostrovsky and J. Grue (2003). Evolution equations for strongly nonlinear internal waves. Phys. Fluids Vol. 15(10), 2934–48.

    Article  MathSciNet  Google Scholar 

  • L. A. Ostrovsky and Y. Stepanyants (2005). Internal solitons in laboratory experiments: Comparison with theoretical models. Chaos Vol. 15, 037111-1–28.

    Article  MathSciNet  Google Scholar 

  • R. B. Perry and G. R. Schimke (1965). Large-amplitude internal waves observed off the Northwest Coast of Sumatra. J. Geophys. Res. Vol. 70(10), 2319–24.

    Google Scholar 

  • P. R. Pinet (1992). Oceanography. West Publ. Comp. 576 pp.

    Google Scholar 

  • R. D. Pingree and G. T. Mardell (1985). Solitary internal waves in the Celtic Sea. Prog. Oceanogr. Vol. 14, 431–41.

    Article  Google Scholar 

  • D. I. Pullin and R. H. J. Grimshaw (1988). Finite amplitude solitary waves on the interface between two fluids. Phys. Fluids Vol. 31, 3350–9.

    Article  MathSciNet  Google Scholar 

  • J. Roberts (1975). Internal gravity waves in the ocean. Marine science. Vol. 2. Marcel Dekker Inc. New York. 274 pp.

    Google Scholar 

  • P.-O. Rusas and J. Grue (2002). Solitary waves and conjugate flows in a three-layer fluid. Eur. J. Mech.B/Fluids Vol. 21, 185–206.

    Article  MATH  MathSciNet  Google Scholar 

  • J. S. Russell (1844). Report on waves. British Association Report.

    Google Scholar 

  • H. Segur and J. L. Hammack (1982). Soliton models of long internal waves. J. Fluid Mech. Vol. 118, 285–304.

    Article  MATH  MathSciNet  Google Scholar 

  • J. A. Shand (1953). Internal waves in the Georgia Strait. Eos. Trans. AGU, Vol. 34, 949–56.

    Google Scholar 

  • T. P. Stanton and L. A. Ostrovsky (1998). Observations of highly nonlinear internal solitons over the continental shelf. Geophys. Res. Lett. Vol. 25, 2695–8.

    Article  Google Scholar 

  • M. Stastna and K. G. Lamb (2002). Vortex shedding and sediment resuspension associated with the interaction of an internal solitary wave and the bottom boundary layer. Geophys. Res. Lett. Vol. 29, 1512.

    Article  Google Scholar 

  • A. Svansson (2006). Otto Pettersson, oceanografen, kemisten, uppfinnaren. Tre Böcker Förlag AB, Göteborg. 375 pp.

    Google Scholar 

  • M. P. Tulin, Y. Yao and P. Wang (2000). The generation and propagation of ship internal waves in a generally stratified ocean at high densimetric Froude numbers, including nonlinear effects. J. Ship Res. Vol. 44(3), 197–227.

    Google Scholar 

  • K.-K. Tung, T. F. Chan and T. Kubota (1982). Large amplitude internal waves of permanent form. Stud. Appl. Math. Vol. 66, 1–44.

    MATH  MathSciNet  Google Scholar 

  • B. Turkington, A. Eydeland and S. Wang (1991). A computational method for solitary waves in a continuously stratified fluid. Stud. Appl. Math. Vol. 85, 93–127.

    MATH  MathSciNet  Google Scholar 

  • R. E. L. Turner and J.-M. Vanden-Broeck (1988). Broadening of interfacial solitary waves. Phys. Fluids Vol. 31, 2486–90.

    Article  MATH  Google Scholar 

  • P. J. H. Unna (1942). Waves and tidal streams. Nature, Lond. Vol. 149, 219–20.

    Google Scholar 

  • H. van Haren, L. St. Louis and D. Marshall (2004). Small and mesoscale processes and their impact on the large scale: an introduction. Deep-Sea Res. II Vol. 51, 2883–7.

    Article  Google Scholar 

  • C. Wunsch and R. Ferrari (2004). Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. Vol. 36, 281–314.

    Article  MathSciNet  Google Scholar 

  • C.-S. Yih (1960). Exact solutions for steady two-dimensional flow of a stratified fluid. J. Fluid Mech. Vol. 9. 161–74.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Yttervik and G. K. Furnes (2004). Current measurements on the continental slope west of Norway in an area with a pronounced two-layer density profile. Deep Sea Res. I Vol. 52, 161–78.

    Article  Google Scholar 

  • N. J. Zabusky and M. D. Kruskal (1965). Interactions of’ solitons’ in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 CISM, Udine

About this chapter

Cite this chapter

Grue, J. (2006). Very large internal waves in the ocean — observations and nonlinear models. In: Grue, J., Trulsen, K. (eds) Waves in Geophysical Fluids. CISM International Centre for Mechanical Sciences, vol 489. Springer, Vienna. https://doi.org/10.1007/978-3-211-69356-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-69356-8_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-37460-3

  • Online ISBN: 978-3-211-69356-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics