Skip to main content

Abstract

It is now over forty years since Abraham Robinson realized that “the concepts and methods of Mathematical Logic are capable of providing a suitable framework fur the development of the Differential and Integral Calculus by means of infinitely small and infinitely large numbers” (Robinson [29], Introduction, p. 2). The magnitude of Robinson’s achievement cannot be overstated. Not only does his framework allow rigorous paraphrases of many arguments of Leibniz, Euler and other mathematicians from the classical period of calculus; it has enabled the development of entirely new, important mathematical techniques and constructs not anticipated by the classics. Researchers working with the methods of nonstandard analysis have discovered new significant results in diverse areas of pure and applied mathematics, from number theory to mathematical physics and economics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.V. Andreev, The notion of relative standardness in axiomatic systems of nonstandard analysis, Thesis, Dept. Math. Mech., State University of N.I. Lobachcvskij in Nizhnij Novgorod, 2002, 96 pp. (Russian).

    Google Scholar 

  2. P.V. Andreev, “On definable standardness predicates in internal set theory”, Mathematical Notes, 66 (1999) 803–809 (Russian).

    Article  MathSciNet  Google Scholar 

  3. D. Ballard, Foundational Aspects of “Non” standard Mathematics, Contemporary Mathematics, vol. 176, American Mathematical Society, Providence, R.I., 1994.

    MATH  Google Scholar 

  4. V. Benci and M. Di Nasso, “Alpha-theory: an elementary axiomatics for nonstandard analysis”, Expositiones Math., 21 (2003) 355–386.

    Article  MATH  Google Scholar 

  5. B. Benninghofen and M.M. Richter, “A general theory of superin-finitesimals”, Fund. Math., 123 (1987) 199–215.

    MathSciNet  Google Scholar 

  6. C.C. Chang and H.J. Keisler, Model Theory, 3rd edition, North-Holland Publ. Co., 1990.

    Google Scholar 

  7. G. Cherlin and J. Hirschfeld, Ultrafilters and ultraproducts in non-standard analysis, in Contributions to Non-standard Analysis, ed. by W.A.J. Luxemburg and A. Robinson, North Holland, Amsterdam 1972.

    Google Scholar 

  8. N.J. Cutland, “Transfer theorems for π-monads”, Ann. Pure Appl. Logic, 44 (1989) 53–62.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Fletcher, “Nonstandard set theory”, J. Symbolic Logic, 54 (1989) 1000–1008.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Goldblatt, Lectures on the Hyperreals: An Introduction to Nonstandard Analysis, Graduate Texts in Math. 188, Springer-Verlag, New York, 1998.

    MATH  Google Scholar 

  11. E.I. Gordon, “Relatively nonstandard elements in the theory of internal sets of E. Nelson”, Siberian Mathematical Journal, 30 (1989) 89–95 (Russian).

    Article  MathSciNet  Google Scholar 

  12. E.I. Gordon, Nonstandard Methods in Commutative Harmonic Analysis, American Mathematical Society, Providence, Rhode Island, 1997.

    MATH  Google Scholar 

  13. K. Hrbacek, “Axiomatic foundations for nonstandard analysis”, Funda-menta Mathematicae, 98 (1978) 1–19; abstract in J. Symbolic Logic, 41 (1976) 285.

    MATH  MathSciNet  Google Scholar 

  14. K. Hrbacek, “Nonstandard set theory”, Amer. Math. Monthly, 86 (1979) 1–19.

    Article  MathSciNet  Google Scholar 

  15. K. Hrbacek, Internally iterated ultrapowers, in Nonstandard Models of Arithmetic and Set Theory, ed. by A. Enayat and R. Kossak, Contemporary Math. 361, American Mathematical Society, Providence, R.I., 2004.

    Google Scholar 

  16. K. Hrbacek, Nonstandard objects in set theory, in Nonstandard Methods and Applications in Mathematics, ed. by N.J. Cutland, M. Di Nasso and D.A. Ross, Lecture Notes in Logic 25, Association for Symbolic Logic, Pasadena, CA., 2005, 41 pp.

    Google Scholar 

  17. K. Hrbacek, Relative Set Theory, work in progress.

    Google Scholar 

  18. V. Kanovei and M. Reeken, “Internal approach to external sets and universes”, Studia Logica, Part I, 55 (1995) 227–235; Part II, 55 (1995) 347–376; Part III, 56 (1996) 293–322.

    Google Scholar 

  19. V. Kanovei and M. Reeken, Nonstandard Analysis, Axiomatically, Springer-Verlag, Berlin, Heidelberg, New York, 2004.

    MATH  Google Scholar 

  20. H. J. Keisler, Calculus: An Infinitesimal Approach, Prindle, Weber and Scmidt, 1976, 1986.

    Google Scholar 

  21. W.A.J. Luxemburg, A general theory of monads, in: W.A.J. Luxemburg, ed., Applications of Model Theory to Algebra, Analysis and Probability, Holt, Rinehart and Winston 1969.

    Google Scholar 

  22. V.A. Molchanov, “On applications of double nonstandard enlargements to topology”, Sibirsk. Mat. Zh., 30 (1989) 64–71.

    MATH  MathSciNet  Google Scholar 

  23. E. Nelson, “Internal set theory: a new approach to Nonstandard Analysis”, Bull. Amer. Math. Soc., 83 (1977) 1165–1198.

    Article  MATH  MathSciNet  Google Scholar 

  24. Y. Péraire and G. Wallet, “Une théorie relative des ensembles intérnes”, C.R. Acad. Sci. Paris, Sér. I, 308 (1989) 301–304.

    MATH  Google Scholar 

  25. Y. Péraire, “Théorie relative des ensembles intérnes”, Osaka Journ. Math., 29 (1992) 267–297.

    MATH  Google Scholar 

  26. Y. Péraire, “Some extensions of the principles of idealization transfer and choice in the relative internal set theory”, Arch. Math. Logic, 34 (1995) 269–277.

    MATH  MathSciNet  Google Scholar 

  27. Y. Péraire, “Formules absolues dans la théorie relative des ensembles intérnes”, Rivista di Matematica Pura ed Applicata, 19 (1996) 27–56.

    MATH  Google Scholar 

  28. Y. Péraire, “Infinitesimal approach of almost-automorphic functions”, Annals of Pure and Applied Logic, 63 (1993) 283–297.

    Article  MATH  MathSciNet  Google Scholar 

  29. A. Robinson, Non-standard Analysis, Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1966.

    MATH  Google Scholar 

  30. A. Robinson and E. Zakon, A set-theoretical characterization of enlargements, in W.A.J. Luxemburg, ed., Applications of Model Theory to Algebra, Analysis and Probability, Holt, Rinehart and Winston 1969.

    Google Scholar 

  31. K.D. Stroyan, Foundations of Infinitesimal Calculus, 2nd ed., Academic Press 1997.

    Google Scholar 

  32. K.D. Stroyan, B. Benninghofen and M.M. Richter, “Superinfinitesimals in topology and functional analysis”, Proc. London Math. Soc., 59 (1989) 153–181.

    Article  MATH  MathSciNet  Google Scholar 

  33. K.D. Stroyan, Superinfinitesimals and inductive limits, in Nonstandard Analysis and its Applications, ed. by N. Cutland. Cambridge University Press, New York, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Wien

About this chapter

Cite this chapter

Hrbacek, K. (2007). Stratified analysis?. In: van den Berg, I., Neves, V. (eds) The Strength of Nonstandard Analysis. Springer, Vienna. https://doi.org/10.1007/978-3-211-49905-4_4

Download citation

Publish with us

Policies and ethics