Skip to main content

Design of Compliant Micromechanisms

  • Chapter
Microsystems Mechanical Design

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 478))

Abstract

A broad overview of the topics related to the mechanical design of compliant micromechanisms is presented. Design methodologies to be used in the design of devices based on leaf springs, flexural notches and continuum structures with distributed compliance are given, and a critical presentation of the peculiarities of these solutions is provided. The extensive bibliographical list is given as means to extend further the study to details of each of the treated topics.

The authors wish to thank M. Gh. Munteanu of the University of Brasov, Romania, for his contribution in some of the illustrated work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz, M., and Stegun, I. A., ed. (1970). Handbook of Mathematical Functions with Formulas. New York, NY, USA: Dover Publications.

    Google Scholar 

  • Ananthasuresh, G. K., and Kota, S. (1995). Designing compliant mechanisms. Mechanical Engineering, November:93–99.

    Google Scholar 

  • Bhushan, B., ed. (2004). Springer Handbook of Nanotechnology. Berlin, D: Springer.

    Google Scholar 

  • De Bona, F. and Zelenika, S. (1993). Characterisation of High Precision Parallel Spring Translators. In Ikawa, N., Shimada, S., Moriwaki, T., McKeown, P. A., and Spragg, R. C., eds., International Progress in Precision Engineering. Stoneham, MA, USA: Butterworth-Heinemann. 761–772.

    Google Scholar 

  • De Bona, F., and Zelenika, S. (1997). A generalised Elastica-type approach to the analysis of large displacements of spring-strips. Journal of Mechanical Engineering Sciences — Proceedings of the Institution of Mechanical Engineers C211:509–517.

    Article  Google Scholar 

  • De Bona, F., and Munteanu M. Gh. (2005). Optimized Flexural Hinges for Compliant Micromechanisms. Analog Integrated Circuits and Signal Processing 44:163–174.

    Article  Google Scholar 

  • Eschenauer, H. A., and Olhoff N. (2001). Topology optimization of continuum structures: a review. Applied Mechanics Review 54:331–390.

    Article  Google Scholar 

  • Gradshteyn, I. S., and Ryzhik, I. M. (1980). Table of Integrals, Series and Products. San Diego, CA, USA: Academic Press.

    MATH  Google Scholar 

  • Henein, S. (2001). Conception de guidages flexibles. Lausanne, CH: Presses Polytechniques et Universitaires Romandes.

    Google Scholar 

  • Hetrick, J., and Kota, S. (1999). An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms. Journal of Mechanical Design 21(2):229–234.

    Google Scholar 

  • Howell, L. L. (2001). Compliant Mechanisms. New York, NY, USA: John Wiley & Sons.

    Google Scholar 

  • Jaecklin, V. P., Linder, C., de Rooij, N. F., and Moret, J. M. (1992). Micromechanical comb actuators with low driving voltage. Journal of Micromechanics and Microengineering 2:250–255.

    Article  Google Scholar 

  • Jones, R. V. (1988). Instruments and Experiences — Papers on Measurement and Instrument Design. New York, NY, USA: John Wiley & Sons.

    Google Scholar 

  • Kota, S., Joo, J., Li, Z., Rodgers, S. M., and Sniegowski, J. (2001). Design of compliant mechanisms: applications to MEMS. Analog Integrated Circuits and Signal Processing 29:7–15.

    Article  Google Scholar 

  • Lobontiu, N. (2003). Compliant Mechanisms — Design of Flexible Hinges. Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Lobontiu, N., and Garcia, M. (2005). Mechanics of Microelectromechanical Systems. Norwell, MA, USA: Kluwer Academic Publishers.

    Google Scholar 

  • Madou, M. (2002). Fundamentals of Microfabrication — The Science of Microfabrication. Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Munteanu, M. Gh., De Bona, F., and Zelenika, S. (1996). An accurate non-linear analysis of very large displacements of beam systems. In Proceedings of the International Conference on Material Engineering. Gallipoli-Lecce, I. 59–66.

    Google Scholar 

  • Nishiwaki, S., Min, S., Ejima, S., and Kikuchi, N. (1998). Structural optimization considering flexibility. International Journal of the Japanese Society of Mechanical Engineers, C41:476–484.

    Google Scholar 

  • Paros, J. M., and Weisbord, L. (1965). How to design flexures hinges. Machine Design November: 151–156.

    Google Scholar 

  • Peterson, R. E. (1974). Stress Concentration Factors. New York, NY, USA: John Wiley & Sons.

    Google Scholar 

  • Senturia, S. D. (2001). Microsystem Design. Norwell, MA, USA: Kluwer Academic Publishers.

    Google Scholar 

  • Slocum, A. H. (1992). Precision Machine Design. Dearborn, MI, USA: Society of Manufacturing Engineers.

    Google Scholar 

  • Smith, S. T., and Chetwynd, D. G. (1992). Foundation of Ultraprecision Mechanism Design. Amsterdam, NL: Gordon & Breach Science Publishers.

    Google Scholar 

  • Smith, S. T. (2000). Flexures — Elements of Elastic Mechanisms. Amsterdam, NL: Gordon & Breach Science Publishers.

    Google Scholar 

  • Timoshenko, S. P., and Gere, J. M. (1961). Theory of Elastic Stability. New York, NY, USA: McGraw-Hill.

    Google Scholar 

  • Trylinski, W. (1971). Fine Mechanisms and Precision Instruments — Principles of Design. Oxford, UK: Pergamon Press.

    Google Scholar 

  • Yang, G., and Nelson, B. J. (2004). Automated Microassembly. In Hsu T.-R. MEMS Packaging. London, UK: INSPEC.

    Google Scholar 

  • Zelenika, S., and De Bona, F. (2002). Analytical and Experimental Characterisation of High-Precision Flexural Pivots Subjected to Lateral Loads. Precision Engineering 26(4):381–388.

    Article  Google Scholar 

  • Zelenika, S., Henein, S., and Myklebust, L. (2004). Investigation of Optimised Notch Shapes for Flexural Hinges. In Proceedings of the 3 rd International Workshop on the Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation. Grenoble, F. paper 04–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 CISM, Udine

About this chapter

Cite this chapter

De Bona, F., Zelenika, S. (2006). Design of Compliant Micromechanisms. In: De Bona, F., Enikov, E.T. (eds) Microsystems Mechanical Design. CISM International Centre for Mechanical Sciences, vol 478. Springer, Vienna. https://doi.org/10.1007/978-3-211-48549-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-48549-1_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-37453-5

  • Online ISBN: 978-3-211-48549-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics