Skip to main content

The engrailed transcription factors and the mesencephalic dopaminergic neurons

  • Conference paper

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 70))

Summary

The engrailed genes belong to a large family of homeobox transcription factors. They are found throughout the animal kingdom, are highly conserved in the DNA binding domain and have been investigated for more than half a century. In the murine genome, two engrailed genes exist, called Engrailed-1 and Engrailed-2. Here, we summarize the properties of the engrailed genes and their functions, such as conserved structures, cellular localisation, secretion and internalisation, transcription factor activity, potential target genes and review their role in the development of mesencephalic dopaminergic neurons. During early development, they take part in the regionalization event, which specifies the neuroepithelium that provides the precursor cells of the mesencephalic dopaminergic neurons with the necessary signals for their induction. Later in the post-mitotic neurons, the two transcription factors participate in their specification and are cell-autonomously required for their survival.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE, Shinsky N, Verdugo JM, Armanini M, Ryan A, Hynes M, Phillips H, Sulzer D, Rosenthal A (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25: 239–252

    Article  PubMed  CAS  Google Scholar 

  • Acampora D, Mazan S, Lallemand Y, Avantaggiato V, Maury M, Simeone A, Brulet P (1995) Forebrain and midbrain regions are deleted in Otx2-/-mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 121: 3279–3290

    PubMed  CAS  Google Scholar 

  • Ades SE, Sauer RT (1994) Differential DNA-binding specificity of the engrailed homeodomain/the role of residue 50. Biochemistry 33: 9187–9194

    Article  PubMed  CAS  Google Scholar 

  • Alberi L, Sgado P, Simon HH (2004) Engrailed genes are cell-autonomously required to prevent apoptosis in mesencephalic dopaminergic neurons. Development 131: 3229–3236

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1981) Development of the brain stem in the rat. V. Thymidine-radiographic study of the time of origin of neurons in the midbrain tegmentum. J Comp Neurol 198: 677–716

    Article  PubMed  CAS  Google Scholar 

  • Ang SL, Jin O, Rhinn M, Daigle N, Stevenson L, Rossant J (1996) A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development 122: 243–252

    PubMed  CAS  Google Scholar 

  • Barak O, Lazzaro MA, Lane WS, Speicher DW, Picketts DJ, Shiekhattar R (2003) Isolation of human NURF: a regulator of Engrailed gene expression. Embo J 22: 6089–6100

    Article  PubMed  CAS  Google Scholar 

  • Brodski C, Weisenhorn DM, Signore M, Sillaber I, Oesterheld M, Broccoli V, Acampora D, Simeone A, Wurst W (2003) Location and size of dopaminergic and serotonergic cell populations are controlled by the position of the midbrain-hindbrain organizer. J Neurosci 23: 4199–4207

    PubMed  CAS  Google Scholar 

  • Condron BG, Patel NH, Zinn K (1994) Engrailed controls glial/neuronal cell fate decisions at the midline of the central nervous system. Neuron 13: 541–554

    Article  PubMed  CAS  Google Scholar 

  • Cosgaya JM, Aranda A, Cruces J, Martin-Blanco E (1998) Neuronal differentiation of PC12 cells induced by engrailed homeodomain is DNA-binding specific and independent of MAP kinases. J Cell Sci 111 (Pt 16): 2377–2384

    PubMed  CAS  Google Scholar 

  • Danielian PS, McMahon AP (1996) Engrailed-1 as a target of the Wnt-1 signalling pathway in vertebrate midbrain development. Nature 383: 332–334

    Article  PubMed  CAS  Google Scholar 

  • Desplan C, Theis J, O’Farrell PH (1985) The Drosophila developmental gene, engrailed, encodes a sequence-specific DNA binding activity. Nature 318: 630–635

    Article  PubMed  CAS  Google Scholar 

  • Desplan C, Theis J, O’Farrell PH (1988) The sequence specificity of homeodomain-DNA interaction. Cell 54: 1081–1090

    Article  PubMed  CAS  Google Scholar 

  • Duman-Scheel M, Patel NH (1999) Analysis of molecular marker expression reveals neuronal homology in distantly related arthropods. Development 126: 2327–2334

    PubMed  CAS  Google Scholar 

  • Eker R (1929) The recessive mutant engrailed in Drosophila melanogaster. Hereditas 12: 217–222

    Article  Google Scholar 

  • Ekker M, Wegner J, Akimenko MA, Westerfield M (1992) Coordinate embryonic expression of three zebrafish engrailed genes. Development 116: 1001–1010

    PubMed  CAS  Google Scholar 

  • Fjose A, McGinnis WJ, Gehring WJ (1985) Isolation of a homoeo box-containing gene from the engrailed region of Drosophila and the spatial distribution of its transcripts. Nature 313: 284–289

    Article  PubMed  CAS  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151: 1531–1545

    PubMed  CAS  Google Scholar 

  • Foucher I, Montesinos ML, Volovitch M, Prochiantz A, Trembleau A (2003) Joint regulation of the MAP1B promoter by HNF3beta/Foxa2 and Engrailed is the result of a highly conserved mechanism for direct interaction of homeoproteins and Fox transcription factors. Development 130: 1867–1876

    Article  PubMed  CAS  Google Scholar 

  • Friedman GC, O’Leary DD (1996) Retroviral misexpression of engrailed genes in the chick optic tectum perturbs the topographic targeting of retinal axons. J Neurosci 16: 5498–5509

    PubMed  CAS  Google Scholar 

  • Gemel J, Jacobsen C, MacArthur CA (1999) Fibroblast growth factor-8 expression is regulated by intronic engrailed and Pbx1-binding sites. J Biol Chem 274: 6020–6026

    Article  PubMed  CAS  Google Scholar 

  • Han K, Levine MS, Manley JL (1989) Synergistic activation and repression of transcription by Drosophila homeobox proteins. Cell 56: 573–583

    Article  PubMed  CAS  Google Scholar 

  • Han K, Jeon MJ, Kim KA, Park J, Choi SY (2000) Efficient intracellular delivery of GFP by homeodomains of Drosophila Fushi-tarazu and Engrailed proteins. Mol Cells 10: 728–732

    Article  PubMed  CAS  Google Scholar 

  • Hanks M, Wurst W, Anson-Cartwright L, Auerbach AB, Joyner AL (1995) Rescue of the En-1 mutant phenotype by replacement of En-1 with En-2. Science 269: 679–682

    Article  PubMed  CAS  Google Scholar 

  • Hanks MC, Loomis CA, Harris E, Tong CX, Anson-Cartwright L, Auerbach A, Joyner A (1998) Drosophila engrailed can substitute for mouse Engrailed1 function in mid-hindbrain, but not limb development. Development 125: 4521–4530

    PubMed  CAS  Google Scholar 

  • Harzsch S, Miller J, Benton J, Dawirs RR, Beltz B (1998) Neurogenesis in the thoracic neuromeres of two crustaceans with different types of metamorphic development. J Exp Biol 201 (Pt 17): 2465–2479

    PubMed  Google Scholar 

  • Hidalgo A (1998) Growth and patterning from the engrailed interface. Int J Dev Biol 42: 317–324

    PubMed  CAS  Google Scholar 

  • Hidalgo-Sanchez M, Simeone A, Alvarado-Mallart RM (1999) Fgf8 and Gbx2 induction concomitant with Otx2 repression is correlated with midbrain-hindbrain fate of caudal prosencephalon. Development 126: 3191–3203

    PubMed  CAS  Google Scholar 

  • Holland LZ, Kene M, Williams NA, Holland ND (1997) Sequence and embryonic expression of the amphioxus engrailed gene (AmphiEn)/the metameric pattern of transcription resembles that of its segment-polarity homolog in Drosophila. Development 124: 1723–1732

    PubMed  CAS  Google Scholar 

  • Itasaki N, Nakamura H (1996) A role for gradient en expresion in positional specification on the optic tectum. Neuron 16: 55–62

    Article  PubMed  CAS  Google Scholar 

  • Joliot A, Trembleau A, Raposo G, Calvet S, Volovitch M, Prochiantz A (1997) Association of Engrailed homeoproteins with vesicles presenting caveolae-like properties. Development 124: 1865–1875

    PubMed  CAS  Google Scholar 

  • Joliot A, Maizel A, Rosenberg D, Trembleau A, Dupas S, Volovitch M, Prochiantz A (1998) Identification of a signal sequence necessary for the unconventional secretion of Engrailed homeoprotein. Curr Biol 8: 856–863

    Article  PubMed  CAS  Google Scholar 

  • Joyner AL, Kornberg T, Coleman KG, Cox DR, Martin GR (1985) Expression during embryogenesis of a mouse gene with sequence homology to the Drosophila engrailed gene. Cell 43: 29–37

    Article  PubMed  CAS  Google Scholar 

  • Kissinger CR, Liu BS, Martin-Blanco E, Kornberg TB, Pabo CO (1990) Crystal structure of an engrailed homeodomain-DNA complex at 2.8 A resolution/a framework for understanding homeodomain-DNA interactions. Cell 63: 579–590

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Fujioka M, Tolkunova EN, Deka D, Abu-Shaar M, Mann RS, Jaynes JB (2003) Engrailed cooperates with extradenticle and homothorax to repress target genes in Drosophila. Development 130: 741–751

    Article  PubMed  CAS  Google Scholar 

  • Koster JG, Eizema K, Peterson-Maduro LJ, Stegeman BI, Destree OH (1996) Analysis of Wnt/Engrailed signaling in Xenopus embryos using biolistics. Dev Biol 173: 348–352

    Article  PubMed  CAS  Google Scholar 

  • Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18: 106–108

    Article  PubMed  CAS  Google Scholar 

  • Kuner JM, Nakanishi M, Ali Z, Drees B, Gustavson E, Theis J, Kauvar L, Kornberg T, O’Farrell PH (1985) Molecular cloning of engrailed: a gene involved in the development of pattern in Drosophila melanogaster. Cell 42: 309–316

    Article  PubMed  CAS  Google Scholar 

  • Lee SM, Danielian PS, Fritzsch B, McMahon AP (1997) Evidence that FGF8 signalling from the midbrain-hindbrain junction regulates growth and polarity in the developing midbrain. Development 124: 959–969

    PubMed  CAS  Google Scholar 

  • Liu A, Joyner AL (2001) EN and GBX2 play essential roles downstream of FGF8 in patterning the mouse mid/hindbrain region. Development 128: 181–191

    PubMed  CAS  Google Scholar 

  • Logan C, Hanks MC, Noble-Topham S, Nallainathan D, Provart NJ, Joyner AL (1992) Cloning and sequence comparison of the mouse, human, and chicken engrailed genes reveal potential functional domains and regulatory regions. Dev Genet 13: 345–358

    Article  PubMed  CAS  Google Scholar 

  • Logan C, Wizenmann A, Drescher U, Monschau B, Bonhoeffer F, Lumsden A (1996) Rostral optic tectum acquires caudal characteristics following ectopic engrailed expression. Curr Biol 6: 1006–1014

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Corrales NL, Sonstegard TS, Smith TP (1998) Comparative gene mapping: cytogenetic localization of PROC, EN1, ALPI, TNP1, and IL1B in cattle and sheep reveals a conserved rearrangement relative to the human genome. Cytogenet Cell Genet 83: 35–38

    Article  PubMed  CAS  Google Scholar 

  • Lowe CJ, Wray GA (1997) Radical alterations in the roles of homeobox genes during echinoderm evolution. Nature 389: 718–721

    Article  PubMed  CAS  Google Scholar 

  • Maizel A, Bensaude O, Prochiantz A, Joliot A (1999) A short region of its homeodomain is necessary for engrailed nuclear export and secretion. Development 126: 3183–3190

    PubMed  CAS  Google Scholar 

  • Maizel A, Tassetto M, Filhol O, Cochet C, Prochiantz A, Joliot A (2002) Engrailed homeoprotein secretion is a regulated process. Development 129: 3545–3553

    PubMed  CAS  Google Scholar 

  • Manak JR, Scott MP (1994) A class act/conservation of homeodomain protein functions. Development (Suppl): 61–77

    Google Scholar 

  • Marie B, Bacon JP, Blagburn JM (2000) Double-stranded RNA interference shows that Engrailed controls the synaptic specificity of identified sensory neurons. Curr Biol 10: 289–292

    Article  PubMed  CAS  Google Scholar 

  • McMahon AP, Bradley A (1990) The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62: 1073–1085

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma Y, Horikoshi M, Roeder RG, Desplan C (1990) Binding site-dependent direct activation and repression of in vitro transcription by Drosophila homeodomain proteins. Cell 61: 475–484

    Article  PubMed  CAS  Google Scholar 

  • Patel NH, Martin-Blanco E, Coleman KG, Poole SJ, Ellis MC, Kornberg TB, Goodman CS (1989) Expression of engrailed proteins in arthropods, annelids, and chordates. Cell 58: 955–968

    Article  PubMed  CAS  Google Scholar 

  • Perrone-Capano C, Di Porzio U (2000) Genetic and epigenetic control of midbrain dopaminergic neuron development. Int J Dev Biol 44: 679–687

    PubMed  CAS  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276: 2045–2047

    Article  PubMed  CAS  Google Scholar 

  • Prochiantz A (1999) Homeodomain-derived peptides. In and out of the cells. AnnN YAcad Sci 886: 172–179

    Article  CAS  Google Scholar 

  • Prochiantz A, Joliot A (2003) Can transcription factors function as cell-cell signalling molecules? Nat Rev Mol Cell Biol 4: 814–819

    PubMed  CAS  Google Scholar 

  • Puelles E, Annino A, Tuorto F, Usiello A, Acampora D, Czerny T, Brodski C, Ang SL, Wurst W, Simeone A (2004) Otx2 regulates the extent, identity and fate of neuronal progenitor domains in the ventral midbrain. Development 131: 2037–2048

    Article  PubMed  CAS  Google Scholar 

  • Puelles E, Acampora D, Lacroix E, Signore M, Annino A, Tuorto F, Filosa S, Corte G, Wurst W, Ang SL, Simeone A (2003) Otx dose-dependent integrated control of antero-posterior and dorso-ventral patterning of midbrain. Nat Neurosci 6: 453–460

    PubMed  CAS  Google Scholar 

  • Saueressig H, Burrill J, Goulding M (1999) Engrailed-1 and netrin-1 regulate axon pathfinding by association interneurons that project to motor neurons. Development 126: 4201–4212

    PubMed  CAS  Google Scholar 

  • Scholtz G, Patel NH, Dohle W (1994) Serially homologous engrailed stripes are generated via different cell lineages in the germ band of amphipod crustaceans (Malacostraca, Peracarida). Int J Dev Biol 38: 471–478

    PubMed  CAS  Google Scholar 

  • Schwarz M, Alvarez-Bolado G, Urbanek P, Busslinger M, Gruss P (1997) Conserved biological function between Pax-2 and Pax-5 in midbrain and cerebellum development/evidence from targeted mutations. Proc Natl Acad Sci USA 94: 14518–14523

    Article  PubMed  CAS  Google Scholar 

  • Serrano N, Maschat F (1998) Molecular mechanism of polyhomeotic activation by Engrailed. Embo J 17: 3704–3713

    Article  PubMed  CAS  Google Scholar 

  • Shamim H, Mahmood R, Logan C, Doherty P, Lumsden A, Mason I (1999) Sequential roles for Fgf4, En1 and Fgf8 in specification and regionalization of the midbrain. Development 126: 945–959

    PubMed  CAS  Google Scholar 

  • Sieber BA, Kuzmin A, Canals JM, Danielsson A, Paratcha G, Arenas E, Alberch J, Ogren SO, Ibanez CF (2004) Disruption of EphA/ephrin-a signaling in the nigrostriatal system reduces dopaminergic innervation and dissociates behavioral responses to amphetamine and cocaine. Mol Cell Neurosci 26: 418–428

    Article  PubMed  CAS  Google Scholar 

  • Simon HH, Thuret S, Alberi L (2004) Midbrain dopaminergic neurons: control of their cell fate by the engrailed transcription factors. Cell Tissue Res 318: 51–61

    Article  CAS  Google Scholar 

  • Simon HH, Scholz C, O’Leary DD (2005) Engrailed genes control developmental fate of serotonergic and noradrenergic neurons in mid-and hindbrain in a gene dose-dependent manner. Mol Cell Neurosci 28: 96–105

    Article  PubMed  CAS  Google Scholar 

  • Simon HH, Saueressig H, Wurst W, Goulding MD, O’Leary DD (2001) Fate of midbrain dopaminergic neurons controlled by the engrailed genes. J Neurosci 21: 3126–3134

    PubMed  CAS  Google Scholar 

  • Simon HH, Bhatt L, Gherbassi D, Sgado P, Alberi L (2003) Midbrain dopaminergic neurons/determination of their developmental fate by transcription factors. Ann NY Acad Sci 991: 36–47

    Article  PubMed  CAS  Google Scholar 

  • Smith ST, Jaynes JB (1996) A conserved region of engrailed, shared among all en-, gsc-, Nk1-, Nk2-and msh-class homeoproteins, mediates active transcriptional repression in vivo. Development 122: 3141–3150

    PubMed  CAS  Google Scholar 

  • Teng J, Takei Y, Harada A, Nakata T, Chen J, Hirokawa N (2001) Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J Cell Biol 155: 65–76

    Article  PubMed  CAS  Google Scholar 

  • Thuret S, Bhatt L, O’Leary DD, Simon HH (2004a) Identification and developmental analysis of genes expressed by dopaminergic neurons of the substantia nigra pars compacta. Mol Cell Neurosci 25: 394–405

    Article  PubMed  CAS  Google Scholar 

  • Thuret S, Alavian KN, Gassmann M, Lloyd CK, Smits SM, Smidt MP, Klein R, Dyck RH, Simon HH (2004b) The neuregulin receptor, ErbB4, is not required for normal development and adult maintenance of the substantia nigra pars compacta. J Neurochem 91: 1302–1311

    Article  PubMed  CAS  Google Scholar 

  • Wanninger A, Haszprunar G (2001) The expression of an engrailed protein during embryonic shell formation of the tusk-shell, Antalis entalis (Mollusca, Scaphopoda). Evol Dev 3: 312–321

    Article  PubMed  CAS  Google Scholar 

  • Wedeen CJ, Weisblat DA (1991) Segmental expression of an engrailed-class gene during early development and neurogenesis in an annelid. Development 113: 805–814

    PubMed  CAS  Google Scholar 

  • Wurst W, Bally-Cuif L (2001) Neural plate patterning/upstream and downstream of the isthmic organizer. Nat Rev Neurosci 2: 99–108

    Article  PubMed  CAS  Google Scholar 

  • Wurst W, Auerbach AB, Joyner AL (1994) Multiple developmental defects in Engrailed-1 mutant mice/an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120: 2065–2075

    PubMed  CAS  Google Scholar 

  • Ye W, Shimamura K, Rubenstein JL, Hynes MA, Rosenthal A (1998) FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93: 755–766

    Article  PubMed  CAS  Google Scholar 

  • Yurek DM, Zhang L, Fletcher-Turner A, Seroogy KB (2004) Supranigral injection of neuregulin1-beta induces striatal dopamine overflow. Brain Res 1028: 116–119

    Article  PubMed  CAS  Google Scholar 

  • Zec N, Rowitch DH, Bitgood MJ, Kinney HC (1997) Expression of the homeobox-containing genes EN1 and EN2 in human fetal midgestational medulla and cerebellum. J Neuropathol Exp Neurol 56: 236–242

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this paper

Cite this paper

Gherbassi, D., Simon, H.H. (2006). The engrailed transcription factors and the mesencephalic dopaminergic neurons. In: Riederer, P., Reichmann, H., Youdim, M.B.H., Gerlach, M. (eds) Parkinson’s Disease and Related Disorders. Journal of Neural Transmission. Supplementa, vol 70. Springer, Vienna . https://doi.org/10.1007/978-3-211-45295-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-45295-0_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-28927-3

  • Online ISBN: 978-3-211-45295-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics