Skip to main content

Limitations of cellular models in Parkinson’s disease research

  • Conference paper
Parkinson’s Disease and Related Disorders

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 70))

Summary

Cell cultures for Parkinson’s disease research have the advantage of virtually unlimited access, they allow rapid screening for disease pathogenesis and drug candidates, and they restrict the necessary number of animal experiments. Limitations of cell cultures, include that the survival of neurons is dependent upon the culture conditions; that the cells do not develop their natural neuronal networks. In most cases, neurons are deprived from the physiological afferent and efferent connections. In Parkinson’s disease research, mesencephalic slice cultures, primary immature dopaminergic neurons and immortalized cell lines — either in a proliferating state or in a differentiated state — are used. Neuronal cultures may be plated in the presence or absence of glial cells and serum. These different culture conditions as well as the selection of outcome parameters (morphological evaluation, viability assays, biochemical assays, metabolic assays) have a strong influence on the results of the experiments and the conclusions drawn from them. A primary example is the question of whether L-Dopa is toxic to dopaminergic neurons or whether it provides neurotrophic effects: In pure, neuronal-like cultures, L-Dopa provides toxicity, whereas in the presence of glial cells, it provides trophic effects when applied. The multitude of factors that influence the data generated from cell culture experiments indicates that in order to obtain clear-cut and unambiguous results, investigators need to choose their model carefully and are encouraged to verify their main results with different models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431: 805–810

    Article  PubMed  CAS  Google Scholar 

  • Beaujean D, Rosenbaum C, Muller HW, Willemsen JJ, Lenders J, Bornstein SR (2003) Combinatorial code of growth factors and neuropeptides define neuroendocrine differentiation in PC12 cells. Exp Neurol 184: 348–358

    Article  PubMed  CAS  Google Scholar 

  • Berliocchi L, Fava E, Leist M, Horvat V, Dinsdale D, Read D, Nicotera P (2005) Botulinum neurotoxin C initiates two different programs for neurite degeneration and neuronal apoptosis. J Cell Biol 168: 607–618

    Article  PubMed  CAS  Google Scholar 

  • Bunt G, Wouters FS (2004) Visualization of molecular activities inside living cells with fluorescent labels. Int Rev Cytol 237: 205–277

    Article  PubMed  CAS  Google Scholar 

  • Chung CY, Seo H, Sonntag KC, Brooks A, Lin L, Isacson O (2005) Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet 14: 1709–1725

    Article  PubMed  CAS  Google Scholar 

  • Collier TJ, Steece-Collier K, McGuire S, Sortwell CE (2003) Cellular models to study dopaminergic injury responses. Ann NY Acad Sci 991: 140–151

    Article  PubMed  CAS  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39: 889–909

    Article  PubMed  CAS  Google Scholar 

  • Fornai F, Lenzi P, Gesi M, Soldani P, Ferrucci M, Lazzeri G, Capobianco L, Battaglia G, De Blasi A, Nicoletti F, Paparelli A (2004) Methamphetamine produces neuronal inclusions in the nigrostriatal system and in PC12 cells. J Neurochem 88: 114–123

    Article  PubMed  CAS  Google Scholar 

  • Fornai F, Schluter OM, Lenzi P, Gesi M, Ruffoli R, Ferrucci M, Lazzeri G, Busceti CL, Pontarelli F, Battaglia G, Pellegrini A, Nicoletti F, Ruggieri S, Paparelli A, Sudhof TC (2005) Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alpha-synuclein. Proc Natl Acad Sci USA 102: 3413–3418

    Article  PubMed  CAS  Google Scholar 

  • Gahwiler BH (1988) Organotypic cultures of neural tissue. Trends Neurosci 11: 484–489

    Article  PubMed  CAS  Google Scholar 

  • Garcia O, Almeida A, Massieu L, Bolanos JP (2005) Increased mitochondrial respiration maintains the mitochondrial membrane potential and promotes survival of cerebellar neurons in an endogenous model of glutamate receptor activation. J Neurochem 92: 183–190

    Article  PubMed  CAS  Google Scholar 

  • Haas SJ, Wree A (2002) Dopaminergic differentiation of the Nurr1-expressing immortalized mesencephalic cell line CSM14.1 in vitro. J Anat 201: 61–69

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa T, Matsuzaki M, Takeda A, Kikuchi A, Akita H, Perry G, Smith MA, Itoyama Y (2004) Accelerated alpha-synuclein aggregation after differentiation of SH-SY5Y neuroblastoma cells. Brain Res 1013: 51–59

    Article  PubMed  CAS  Google Scholar 

  • Herkenham M, Groen BG, Lynn AB, De Costa BR, Richfield EK (1991) Neuronal localization of cannabinoid receptors and second messengers in mutant mouse cerebellum. Brain Res 552: 301–310

    Article  PubMed  CAS  Google Scholar 

  • Hermanson E, Joseph B, Castro D, Lindqvist E, Aarnisalo P, Wallen A, Benoit G, Hengerer B, Olson L, Perlmann T (2003) Nurr1 regulates dopamine synthesis and storage in MN9D dopamine cells. Exp Cell Res 288: 324–334

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen B, Gramsbergen JB, Moller Dall A, Rosenblad C, Zimmer J (2005) Characterization of organotypic ventral mesencephalic cultures from embryonic mice and protection against MPP toxicity by GDNF. Eur J Neurosci 21: 2939–2948

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Anwyl R, Suh YH, Djamgoz MB, Rowan MJ (2001) Use-dependent effects of amyloidogenic fragments of (beta)-amyloid precursor protein on synaptic plasticity in rat hippocampus in vivo. J Neurosci 21: 1327–1333

    PubMed  CAS  Google Scholar 

  • Lotharius J, Barg S, Wiekop P, Lundberg C, Raymon HK, Brundin P (2002) Effect of mutant alpha-synuclein on dopamine homeostasis in a new human mesencephalic cell line. J Biol Chem 277: 38884–38894

    Article  PubMed  CAS  Google Scholar 

  • Marx FP, Holzmann C, Strauss KM, Li L, Eberhardt O, Gerhardt E, Cookson MR, Hernandez D, Farrer MJ, Kachergus J, Engelender S, Ross CA, Berger K, Schols L, Schulz JB, Riess O, Kruger R (2003) Identification and functional characterization of a novel R621C mutation in the synphilin-1 gene in Parkinson’s disease. Hum Mol Genet 12: 1223–1231

    Article  PubMed  CAS  Google Scholar 

  • McNaught KS, Shashidharan P, Perl DP, Jenner P, Olanow CW (2002) Aggresome-related biogenesis of Lewy bodies. Eur J Neurosci 16: 2136–2148

    Article  PubMed  Google Scholar 

  • Pothos EN, Larsen KE, Krantz DE, Liu Y, Haycock JW, Setlik W, Gershon MD, Edwards RH, Sulzer D (2000) Synaptic vesicle transporter expression regulates vesicle phenotype and quantal size. J Neurosci 20: 7297–7306

    PubMed  CAS  Google Scholar 

  • Presgraves SP, Borwege S, Millan MJ, Joyce JN (2004a) Involvement of dopamine D(2)/D(3) receptors and BDNF in the neuroprotective effects of S32504 and pramipexole against 1-methyl-4-phenylpyridinium in terminally differentiated SHSY5Y cells. Exp Neurol 190: 157–170

    Article  PubMed  CAS  Google Scholar 

  • Presgraves SP, Ahmed T, Borwege S, Joyce JN (2004b) Terminally differentiated SH-SY5Y cells provide a model system for studying neuroprotective effects of dopamine agonists. Neurotox Res 5: 579–598

    Article  PubMed  Google Scholar 

  • Rideout HJ, Larsen KE, Sulzer D, Stefanis L (2001) Proteasomal inhibition leads to formation of ubiquitin/alpha-synuclein-immunoreactive inclusions in PC12 cells. J Neurochem 78: 899–908

    Article  PubMed  CAS  Google Scholar 

  • Sherer TB, Kim JH, Betarbet R, Greenamyre JT (2003a) Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 179: 9–16

    Article  PubMed  CAS  Google Scholar 

  • Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno-Yagi A, Greenamyre JT (2003b) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23: 10756–10764

    PubMed  CAS  Google Scholar 

  • Smith WW, Margolis RL, Li X, Troncoso JC, Lee MK, Dawson VL, Dawson TM, Iwatsubo T, Ross CA (2005) Alpha-synuclein phosphorylation enhances eosinophilic cytoplasmic inclusion formation in SH-SY5Y cells. J Neurosci 25: 5544–5552

    Article  PubMed  CAS  Google Scholar 

  • Soldner F, Weller M, Haid S, Beinroth S, Miller SW, Wullner U, Davis RE, Dichgans J, Klockgether T, Schulz JB (1999) MPP+ inhibits proliferation of PC12 cells by a p21(WAF1/Cip1)-dependent pathway and induces cell death in cells lacking p21(WAF1/Cip1). Exp Cell Res 250: 75–85

    Article  PubMed  CAS  Google Scholar 

  • Stefanis L, Kholodilov N, Rideout HJ, Burke RE, Greene LA (2001) Synuclein-1 is selectively up-regulated in response to nerve growth factor treatment in PC12 cells. J Neurochem 76: 1165–1176

    Article  PubMed  CAS  Google Scholar 

  • Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37: 173–182

    Article  PubMed  CAS  Google Scholar 

  • Teschemacher AG, Wang S, Lonergan T, Duale H, Waki H, Paton JF, Kasparov S (2005) Targeting specific neuronal populations using adeno-and lentiviral vectors: applications for imaging and studies of cell function. Exp Physiol 90: 61–69

    Article  PubMed  CAS  Google Scholar 

  • Uhl GR, Walther D, Mash D, Faucheux B, Javoy-Agid F (1994) Dopamine transporter messenger RNA in Parkinson’s disease and control substantia nigra neurons. Ann Neurol 35: 494–498

    Article  PubMed  CAS  Google Scholar 

  • von Coelln R, Kugler S, Bahr M, Weller M, Dichgans J, Schulz JB (2001) Rescue from death but not from functional impairment: caspase inhibition protects dopaminergic cells against 6-hydroxydopamineinduced apoptosis but not against the loss of their terminals. J Neurochem 77: 263–273

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this paper

Cite this paper

Falkenburger, B.H., Schulz, J.B. (2006). Limitations of cellular models in Parkinson’s disease research. In: Riederer, P., Reichmann, H., Youdim, M.B.H., Gerlach, M. (eds) Parkinson’s Disease and Related Disorders. Journal of Neural Transmission. Supplementa, vol 70. Springer, Vienna . https://doi.org/10.1007/978-3-211-45295-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-45295-0_40

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-28927-3

  • Online ISBN: 978-3-211-45295-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics