Skip to main content

Endogenous and exogenous modulators of potentials evoked by a painful cutaneous laser (LEPs)

  • Chapter

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 99))

Summary

Little is known about the specific functions of the human cortical structures receiving nociceptive input, their relationship to various dimensions of pain, and the modulation of these inputs by attention. We now review studies demonstrating the subdural potentials evoked by a cutaneous laser stimulus which produces a pure pain sensation by selective activation of cutaneous nociceptors (LEPs). These LEPs were localized over human anterior and middle cingulate (A & MCC), somatosensory (SI) and parasylvian (PS) cortices. LEP, lesion and imaging data define pain-related elements within each of these structures: insula and parietal operculum within PS, anterior and middle cingulate cortex, and possibly Brodman’s areas 3a, 3b and 1 within SI. LEPs recorded over each of these areas is modulated with laser intensity and evoked pain. Attention to the painful laser produces an increase in the amplitude of LEPs over all three cortical areas and emergence of a late positive potential over ACC alone. These studies provide clear evidence of human cortical structures receiving nociceptive input and the modulation of that input by exogenous (e.g. laser intensity) and endogenous factors (e.g. directed attention).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adams RD, Victor M, Ropper AH (1996) Principles of neurology. McGraw-Hill, New York

    Google Scholar 

  2. Berthier M, Starkstein S, Leiguarda R (1988) Asymbolia for pain: a sensory-limbic disconnection syndrome. Ann Neurol 24: 41–49

    Article  PubMed  CAS  Google Scholar 

  3. Blitz B, Dinnerstein AJ (1968) Effects of different types of instructions on pain parameters. J Abnorm Psychol 73: 276–280

    Article  PubMed  CAS  Google Scholar 

  4. Blomqvist A, Zhang ET, Craig AD (2000) Cytoarchitectonic and immunohistochemical characterization of a specific pain and temperature relay, the posterior portion of the ventral medial nucleus, in the human thalamus. Brain 123 Pt 3: 601–619

    Article  PubMed  Google Scholar 

  5. Casey KL, Minoshima S, Berger KL, Koeppe RA, Morrow TJ, Frey KA (1994) Positron emission tomographic analysis of cerebral structures activated specifically by repetitive noxious heat stimuli. J Neurophysiol 71: 802–807

    PubMed  CAS  Google Scholar 

  6. Celesia GG, Puletti F (1969) Auditory cortical areas in man. Neurology 19: 211–220

    PubMed  CAS  Google Scholar 

  7. Chen AC, Dworkin SF, Haug J, Gehrig J (1989) Human pain responsivity in a tonic pain model: psychological determinants. Pain 37: 143–160

    Article  PubMed  CAS  Google Scholar 

  8. Coghill RC, Gilron I, Iadarola MJ (2001) Hemispheric lateralization of somatosensory processing. J Neurophysiol 85: 2602–2612

    PubMed  CAS  Google Scholar 

  9. Coghill RC, Sang CN, Maisog JM, Iadarola MJ (1999) Pain intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol 82: 1934–1943

    PubMed  CAS  Google Scholar 

  10. Coghill RC, Talbot JD, Evans AC, Meyer E, Gjedde A, Bushnell MC, Duncan GH (1994) Distributed processing of pain and vibration by the human brain. J Neurosci 14: 4095–4108

    PubMed  CAS  Google Scholar 

  11. Craig AD (1995) Supraspinal projections of lamina one neurons. In: Besson JM, Guilbaud G, Ollat H (eds) Forebrain areas involved in pain processing. Libby, London, pp 13–25

    Google Scholar 

  12. Crawford HJ, Knebel T, Vendemia JMC (1998) The nature of hypnotic analgesia: neurophysiological foundation and evidence. Contemporary hypnosis 15: 22–33

    Article  Google Scholar 

  13. Davis KD (2000) Studies of pain using functional magnetic resonance imaging. In: Casey KL, Bushnell MC (eds) Pain Imaging. IASP Press, Seattle, pp 195–210

    Google Scholar 

  14. Davis KD, Taylor SJ, Crawley AP, Wood ML, Mikulis DJ (1997) Functional MRI of pain-and attention related activation in the human cingulate cortex. J Neurophysiol 77: 3370–3380

    PubMed  CAS  Google Scholar 

  15. de Wied M, Verbaten MN (2001) Affective pictures processing, attention, and pain tolerance. Pain 90: 163–172

    Article  PubMed  Google Scholar 

  16. Derbyshire SWG, Vogt BA, Jones AKP (1998) Pain and stroop interference tasks activate separate processing modules in anterior cingulate cortex. Exp Brain Res 118: 52–60

    Article  PubMed  CAS  Google Scholar 

  17. Dong WK, Hayashi T, Roberts VJ, Fusco BM, Chudler EH (1996) Behavioral outcome of posterior parietal cortex injury in the monkey. Pain 64: 579–587

    Article  PubMed  CAS  Google Scholar 

  18. Friederich M, Trippe RH, Ozcan M, Weiss T, Hecht H, Miltner WH (2001) Laser-evoked potentials to noxious stimulation during hypnotic analgesia and distraction of attention suggest different brain mechanisms of pain control. Psychophysiology 38: 768–776

    Article  PubMed  CAS  Google Scholar 

  19. Graziano A, Jones EG (2004) Widespread thalamic terminations of fibers arising in the superficial medullary dorsal horn of monkeys and their relation to calbindin immunoreactivity. J Neurosci 24: 248–256

    Article  PubMed  CAS  Google Scholar 

  20. Greenspan JD, Lee RR, Lenz FA (1999) Pain sensitivity alterations as a function of lesion location in the parasylvian cortex. Pain 81: 273–282

    Article  PubMed  CAS  Google Scholar 

  21. Hodes RL, Howland EW, Lightfoot N, Cleeland CS (1990) The effects of distraction on responses to cold pressor pain. Pain 41: 109–114

    Article  PubMed  CAS  Google Scholar 

  22. Kenshalo DR Jr, Isensee O (1983) Responses of primate SI cortical neurons to noxious stimuli. J Neurophysiol 50: 1479–1496

    PubMed  Google Scholar 

  23. Kenshalo DR, Thomas DA, Dubner R (1991) Primary somatosensory cortical lesions reduce the monkeys’ ability to discriminate and detect noxious thermal stimulation. Society For Neuroscience Abstract 17: 1206 (Ref type: abstract)

    Google Scholar 

  24. Krubitzer L, Clarey J, Tweedale R, Elston G, Calford M (1995) A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys. J Neurosci 15: 3821–3839

    PubMed  CAS  Google Scholar 

  25. Lenz FA, Krauss G, Treede RD, Lee JL, Boatman D, Crone N, Minahan R, Port J, Rios M (2000) Different generators in human temporal-parasylvian cortex account for subdural laser-evoked potentials, auditory-evoked potentials, and event-related potentials. Neurosci Lett 279: 153–156

    Article  PubMed  CAS  Google Scholar 

  26. Lenz FA, Rios M, Chau D, Krauss GL, Zirh TA, Lesser RP (1998a) Painful stimuli evoke potentials recorded from the parasylvian cortex in humans. J Neurophysiol 80: 2077–2088

    PubMed  CAS  Google Scholar 

  27. Lenz FA, Rios MR, Zirh TA, Krauss G, Lesser RP (1998b) Painful stimuli evoke potentials recorded over the human anterior cingulated gyrus. J Neurophysiol 79: 2231–2234

    PubMed  CAS  Google Scholar 

  28. Lenz FA, Treede RD (2002) Attention, novelty, and pain. Pain 99: 1–3

    Article  PubMed  Google Scholar 

  29. Lynch SA (1980) The functional organization of posterior parietal association cortex. Behav Brain Sci 3: 485–534

    Article  Google Scholar 

  30. McCaul KD, Malott JM (1984) Distraction and coping with pain. Psychol Bull 95: 516–533

    Article  PubMed  CAS  Google Scholar 

  31. Ohara S, Crone NE, Weiss N, Lenz FA (2004a) Attention to pain modulates electrocorticographic event-related desynchronization during cutaneous laser stimulation in humans. Clin Neurophysiol 115: 1641–1652

    Article  PubMed  CAS  Google Scholar 

  32. Ohara S, Crone NE, Weiss N, Treede RD, Lenz FA (2004b) Cutaneous painful laser stimuli evoke responses recorded directly from primary somatosensory cortex in awake humans. J Neurophysiol 91: 2734–2746

    Article  PubMed  CAS  Google Scholar 

  33. Ohara S, Crone NE, Weiss N, Treede R-D, Lenz FA (2004c) Amplitudes of laser evoked potential recorded from primary somatosensory, parasylvian and medial frontal cortex are graded with stimulus intensity. Pain 110: 318–328

    Article  PubMed  CAS  Google Scholar 

  34. Ohara S, Crone NE, Weiss N, Vogel H, Treede RD, Lenz FA (2004d) Attention to pain is processed at multiple cortical sites in man. Exp Brain Res 156: 513–517

    Article  PubMed  Google Scholar 

  35. Penfield W, Jasper H (1954) Epilepsy and the functional anatomy of the human brain. Little Brown, Boston

    Google Scholar 

  36. Peyron R, Laurent B, Garcia-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin 30: 263–288

    Article  PubMed  CAS  Google Scholar 

  37. Ploner M, Freund H-J, Schnitzler A (1999) Pain affect without pain sensation in a patient with a postcentral lesion. Pain 81: 211–214

    Article  PubMed  CAS  Google Scholar 

  38. Ploner M, Schmitz F, Freund HJ, Schnitzler A (1999) Parallel activation of primary and secondary somatosensory cortices in human pain processing. J Neurophysiol 81: 3100–3104

    PubMed  CAS  Google Scholar 

  39. Ploner M, Schmitz F, Freund HJ, Schnitzler A (2000) Differential organization of touch and pain in human primary somatosensory cortex. J Neurophysiol 83: 1770–1776

    PubMed  CAS  Google Scholar 

  40. Rainville P, Bushnell MC, Duncan GH (2000) PET studies of the subjective experience of pain. In: Casey KL, Bushnell MC (eds) Pain imaging. IASP Press, Seattle, pp 123–156

    Google Scholar 

  41. Rios M, Treede R, Lee J, Lenz FA (1999) Direct evidence of nociceptive input to human anterior cingulate gyrus and parasylvian cortex. Curr Rev Pain 3: 256–264

    PubMed  Google Scholar 

  42. Tommerdahl M, Delemos KA, Favorov OV, Metz CB, Vierck CJ Jr, Whitsel BL (1998) Response of anterior parietal cortex to different modes of same-site skin stimulation. J Neurophysiol 80: 3272–3283

    PubMed  CAS  Google Scholar 

  43. Vogel H, Port JD, Lenz FA, Solaiyappan M, Krauss G, Treede RD (2003) Dipole source analysis of laser-evoked subdural potentials recorded from parasylvian cortex in humans. J Neurophysiol 89: 3051–3060

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Lenz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this chapter

Cite this chapter

Ohara, S., Anderson, W.S., Lawson, H.C., Lee, H.T., Lenz, F.A. (2006). Endogenous and exogenous modulators of potentials evoked by a painful cutaneous laser (LEPs). In: Chang, J.W., Katayama, Y., Yamamoto, T. (eds) Advances in Functional and Reparative Neurosurgery. Acta Neurochirurgica Supplementum, vol 99. Springer, Vienna. https://doi.org/10.1007/978-3-211-35205-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-35205-2_15

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-35204-5

  • Online ISBN: 978-3-211-35205-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics