Skip to main content

Connections of the basal ganglia with the limbic system: implications for neuromodulation therapies of anxiety and affective disorders

  • Chapter
Operative Neuromodulation

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 97/2))

Abstract

The basal ganglia are best known for their role in motor planning and execution. However, it is currently widely accepted that they are also involved in cognitive and emotional behaviors. Parts of the basal ganglia play a key role in reward and reinforcement, addictive behaviors and habit formation. Pathophysiological processes underlying psychiatric disorders such as depression, obsessive compulsive disorder and even schizophrenia involve the basal ganglia and their connections to many other structures and particularly to the prefrontal cortex and the limbic system. In this article, we aim, on the basis of current research, to describe in a succinct manner the most important connections of the basal ganglia with the limbic system which are relevant to normal behaviors but also to psychiatric disorders. Currently, we possess sufficiently powerful tools that enable us to modulate brain networks such as cortex stimulation (CS) or deep brain stimulation (DBS). Notably, neuromodulation of basal ganglia function for the treatment of movement disorders has become a standard practice, which provides insights into the psychiatric problems that occur in patients with movement disorders. It is clear that a sound understanding of the currently available knowledge on the circuits connecting the basal ganglia with the limbic system will provide the theoretical platform that will allow precise, selective and beneficial neuromodulatory interventions for refractory psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12: 366–375

    PubMed  CAS  Google Scholar 

  2. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13: 266–271

    PubMed  CAS  Google Scholar 

  3. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: 357–381

    PubMed  CAS  Google Scholar 

  4. Bannon S, Gonsalvez CJ, Croft RJ, Boyce PM (2002) Response inhibition deficits in obsessive-compulsive disorder. Psychiatry Res 110: 165–174

    PubMed  Google Scholar 

  5. Barbas H, Haswell H, Dermon CR (1991) Diverse thalamic projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 313: 65–94

    PubMed  CAS  Google Scholar 

  6. Baron MS, Witchmann T, Ma D, DeLong MR (2002) Effects on transient focal inactivation of the basal ganglia in parkinsonian primates. J Neurosci 22: 592–599

    PubMed  CAS  Google Scholar 

  7. Baunez C, Robbins TW (1997) Bilateral lesions of the subthalamic nucleus induce multiple deficits in an attentional task in rats. Eur J Neurosci 9: 2086–2099

    PubMed  CAS  Google Scholar 

  8. Baxter LR (1991) PET studies of cerebral function in major depression and obsessive-compulsive disorder: emerging prefrontal cortex consensus. Ann Clin Psychiatry 3: 103–109

    Google Scholar 

  9. Baxter LR Jr (1992) Neuroimaging studies of obsessive compulsive disorder. Psychiatr Clin North Am 15: 871–884

    PubMed  Google Scholar 

  10. Baxter LR, Phelps ME, Mazziotta JC, Guze BH, Schwartz JM, Selin CE (1987) Local cerebral glucose metabolic rates in obsessive-compulsive disorder: a comparison with rates in unipolar depression and normal controls. Arch Gen Psychiatry 44: 211–218

    PubMed  Google Scholar 

  11. Bejjani BP, Houeto JL, Hariz M, Yelnik J, Mesnage V, Bonnet AM, Pidoux B, Dormont D, Cornu P, Agid Y (2002) Aggressive behavior induced by intraoperative stimulation in the triangle of Sano. Neurology 59: 1425–1427

    PubMed  CAS  Google Scholar 

  12. Benabid AL, Pollak P, Gross C et al (1993) Stimulation of subthalamic nucleus acutely changes clinical status in Parkinson’s disease. Soc Neurosci Abstr 19: 1052

    Google Scholar 

  13. Benazzouz A, Cross C, Feger J (1993) Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci 5: 382–389

    PubMed  CAS  Google Scholar 

  14. Bolam JP, Powell JF, Totterdell S, Smith AD (1981) The proportion of neurons in the rat neostriatum that project to the substantia nigra demonstrated using horseradish peroxidase conjugated with wheat germ agglutinin. Brain Res 220: 339–343

    PubMed  CAS  Google Scholar 

  15. Braun AR, Randolph C, Stoetter B (1995) The functional neuroanatomy of Tourette syndrome. Neuropsychopharmacology 9: 277–291

    Google Scholar 

  16. Breiter HC, Gollub RL, Weisskoff RM, Kennedy DN, Makris N, Berke JD, Goodman JM, Kantor HL, Gastfriend DR, Riorden JP, Mathew RT, Rosen BR, Hyman SE (1997) Acute effects of cocaine on human brain activity and emotion Neuron 19: 591–611

    PubMed  CAS  Google Scholar 

  17. Breiter HC, Rauch SL, Kwong KK, Baker JR, Weisskoff RM, Kennedy DN, Kendrick AD, Davis TL, Jiang A, Cohen MS, Stern CE, Belliveau JW, Baer L, O’Sullivan RL, Savage CR, Jenike MA, Rosen BR (1996) Functional magnetic resonance imaging of symptom provocation in obsessive-compulsive disorder. Arch Gen Psychiatry 53: 595–606

    PubMed  CAS  Google Scholar 

  18. Broca P (1878) Anatomie comparee des circonvolutions cerebrales: Le grand lobe limbique et la scissure limbique dans la serie des mammife. Res Rev Anthropol 1: 385–498

    Google Scholar 

  19. Capote HA, Flaherty L, Lichter D (2001) Addictions and frontal subcortical circuits. In: Lichter D, Cummings JL (eds) Frontal subcortical circuits in psychiatric and neurological disorders. Guilford Press, New York, pp 231–259

    Google Scholar 

  20. Cardinal RN, Howes NJ (2005) Effects of lesions of the nucleus accumbens core on choice between small certain rewards and large uncertain rewards in rats. BMC Neuroscience 6: 37

    PubMed  Google Scholar 

  21. Cardinal RN, Pennicott DR, Sugathapala CL, Robbins TW, Everitt BJ (2001) Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science 292: 2499–2501

    PubMed  CAS  Google Scholar 

  22. Chang HT, Wilson CJ, Kitai ST (1981) Single neostriatal efferent axons in the globus pallidus: a light and electron microscopic study. Science 213: 915–918

    PubMed  CAS  Google Scholar 

  23. Charney DS (2003) Neuroanatomical circuits modulating fear and anxiety behaviors. Acta Psychiatr Scand Suppl 417: 38–50

    PubMed  Google Scholar 

  24. Cohen Y, Lachenmeyer JR, Springer C (2003) Anxiety and selective attention in obsessive-compulsive disorder. Behav Res Ther 41: 1311–1323

    PubMed  Google Scholar 

  25. Coles ME, Heimberg RG (2002) Memory biases in the anxiety disorders: current status. Clin Psychol Rev 22: 587–627

    PubMed  Google Scholar 

  26. Cummings JL (1995) Anatomic and behavioral aspects of frontal subcortical circuits. Ann NY Acad Sci 769: 1–13

    PubMed  CAS  Google Scholar 

  27. Davidson RJ, Irwin W (1999) The functional anatomy of emotion and affective style. Trends Cogn Sci 3: 11–21

    PubMed  Google Scholar 

  28. De Jong MR (2000) The basal ganglia. In: Kandel JH, Schwartz JH, Thomas MJ (eds) Principles of Neural science. McGrow-Hill, New York, NY, pp 853–867

    Google Scholar 

  29. DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13: 281–285

    PubMed  CAS  Google Scholar 

  30. DeVito JL, Anderson ME (1982) An autoradiographic study of the efferent connections of the globus pallidus in Macaca mulatta. Exp Brain Res 46: 107–117

    PubMed  CAS  Google Scholar 

  31. DiCiano P, Cardinal RN, Cowell RA, Little SJ, Everitt BJ (2001) Differential involvement of NMDA, AMPA/kainate, and dopamine receptors in the nucleus accumbens core in the acquisition and performance of Pavlovian approach behavior. J Neurosci 21: 9471–9477

    CAS  Google Scholar 

  32. Drevets WC (2000) Neuroimaging studies of mood disorders. Biol Psychiatry 48: 813–829

    PubMed  CAS  Google Scholar 

  33. Drevets WC (2001) Neuroimaging and neuropathological studies in depression: implications for the cognitive-emotional features of mood disorders. Cur Opin Neurobiol 11: 240–249

    CAS  Google Scholar 

  34. Drevets WC, Todd RD (1997) Depression, mania and related disorders. In: Guze SB (ed) Adult psychiatry. Mosby Press, St Louis MO, pp 99–141

    Google Scholar 

  35. Drevets WC, Videen TO, Price JL, Preskorn SH, Carmichael ST, Raichle ME (1992) A functional anatomical study of unipolar depression. J Neurosci 12: 3628–3641

    PubMed  CAS  Google Scholar 

  36. Drevets WC, Price JL, Simpson JR Jr, Todd RD, Reich T, Vannier M, Raichle ME (1997) Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386: 824–827

    PubMed  CAS  Google Scholar 

  37. Drevets WC, Gautier C, Price JC, Kupfer DJ, Kinahan PE, Grace AA, Price JL, Mathis CA (2001) Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol Psychiatry 49: 81–96

    PubMed  CAS  Google Scholar 

  38. Everitt BJ, Robbins TW (1992) Amygdala-ventral striatal interactions and reward-related processes. In: Angleton JP (ed) The amygdala: neurobiological aspects of emotion, memory and mental dysfunction. Wiley-Liss, New York, pp 401–429

    Google Scholar 

  39. Everitt BJ, Cador M, Robbins TW (1989) Interactions between the amygdala and ventral striatum in stimulus-reward associations: studies using a second-order schedule of sexual reinforcement. Neuroscience 30: 63–75

    PubMed  CAS  Google Scholar 

  40. Fenelon G, Percheron G, Yelnik J (1990) Topographic distribution of pallidal neurons projecting to the thalamus in macaques. Brain Res 520: 27–35

    PubMed  CAS  Google Scholar 

  41. Fibiger HC (1991) The dopamine hypothesis of schizophrenia and mood disorders. In: Willner P, Scheel-Kruger J (eds) The mesolimbic dopamine system: from motivation to action. Wiley, New York, pp 615–638

    Google Scholar 

  42. Fibiger HC, Phillips AG (1986) Reward, motivation, cognition: psychobiology of mesotelencephalic dopamine systems. In: Mountcasle VB, Plum F, Geiger SR (eds) Handbook of physiology. Section I: the nervous system. American Physiological Society Bethesda, MD, pp 647–674

    Google Scholar 

  43. Francois C, Percheron G, Parent A, Sadikot AF, Fenelon G, Yelnik J (1991) Topography of the projection from the central complex of the thalamus to the sensorimotor striatal territory in monkeys. J Comp Neurol 305: 17–34

    PubMed  CAS  Google Scholar 

  44. Francois C, Savy C, Jan C, Tandé D, Hirsch EC, Yelnik J (2000) Dopaminergic innervation of the subthalamic nucleus in the normal state, in MPTP-treated monkeys and in Parkinson’s disease patients. J Comp Neurol 425: 121–129

    PubMed  CAS  Google Scholar 

  45. Friedman LJ, Insel TR, Smith Y (2000) Subcortical projections of area 25 (subgenual cortex) of the macaque monkey. J Comp Neurol 421: 172–188

    Google Scholar 

  46. Fudge JL, Kunishio K, Walsh C, Richard D, Haber SN (2002) Amygdaloid projections to ventromedial striatal subterritories in the primate. Neurosci 110: 257–275

    CAS  Google Scholar 

  47. Ghika J (2000) Mood and behavior in disorders of the basal ganglia. In: Bogousslavsky J, Cummings JL (eds) Behavior and mood disorders in focal brain lesions. Cambridge University Press, New York, pp 122–201

    Google Scholar 

  48. Goldman-Rakic PS (1988) Topography of cognition: parallel distributed networks in primate association cortex. Annu Rev Neurosci 11: 137–156

    PubMed  CAS  Google Scholar 

  49. Groenewegen HJ, Uylings HBM (2000) The prefrontal cortex and the integration of sensory, limbic and autonomic information. Prog Brain Res 126: 3–28

    PubMed  CAS  Google Scholar 

  50. Haber SN, Lynd E, Klein C, Groenewegen HJ (1990) Topographic organization of the ventral striatal efferent projections in the rhesus monkey: an anterograde tracing study. J Comp Neurol 293: 282–298

    Google Scholar 

  51. Haber SN, Lynd-Balta E, Mitchell SJ (1993) The organization of the descending ventral pallidal projections in the monkey. J Comp Neurol 329: 111–128

    PubMed  CAS  Google Scholar 

  52. Hassani OK, Francois C, Yelnik J, Feger J (1997) Evidence for a dopaminergic innervation of the subthalamic nucleus in the rat. Brain Res 749: 88–94

    PubMed  CAS  Google Scholar 

  53. Hazrati LN, Parent A (1992) The striatopallidal projection displays a high degree of anatomical specificity in the primate. Brain Res 592: 213–227

    PubMed  CAS  Google Scholar 

  54. Hedreen JC (1999) Tyrosine hydroxylase-immunoreactive elements in the human globus pallidus and subthalamic nucleus. J Comp Neurol 409: 400–410

    PubMed  CAS  Google Scholar 

  55. Hedreen JC, DeLong MR (1991) Organization of striatopallidal, striatonigral and nigrostriatal projections in the macaque. J Comp Neurol 304: 569–595

    PubMed  CAS  Google Scholar 

  56. Heidbreder CA, Groenewegen HJ (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 27: 555–579

    PubMed  Google Scholar 

  57. Heimer L (2003) A new anatomical framework for neuropsychiatric disorders and drug abuse. Am J Psychiatry 160: 1726–1739

    PubMed  Google Scholar 

  58. Heimer L, Alheid GF (1991) Piecing together the puzzle of basal forebrain anatomy. In: Napier TC, Kalivas PW, Hanin I (eds) The basal forebrain. Plenum Press, New York, pp 1–42

    Google Scholar 

  59. Hirsch EC, Perier C, Orieux G, Francois C, Feger J, Yelnik J, Vila M, Levy R, Tolosa ES, Marin C, Trinidad HM, Obeso JA, Agid Y (2000) Metabolic effects of nigrostriatal denervation in basal ganglia. Trends Neurosci 23: S78–S85

    PubMed  CAS  Google Scholar 

  60. Hornykiewicz O (1973) Dopamine in the basal ganglia. Its role and therapeutic implications (including the clinical use of L-dopa). Br Med Bull 29: 172–178

    PubMed  CAS  Google Scholar 

  61. Ilinsky IA, Jouandet ML, Goldman-Rakic PS (1985) Organisation of the nigrothalamocortical system in the rhesus monkey. J Comp Neurol 236: 315–330

    PubMed  CAS  Google Scholar 

  62. Inase M, Tokuno H, Nambu A, Akazawa T, Takada M (1996) Origin of thalamocortical projections to the presupplementary motor area (pre-SMA) in the macaque monkey. Neurosci Res 25: 217–227

    PubMed  CAS  Google Scholar 

  63. Jan C, Francçois C, Yelnik J, Tandé D, Agid Y, Hirsch EC (2000) Dopaminergic innervation of the pallidum in the normal state, MPTP-treated monkeys and Parkinsonian patients. Eur J Neurosci 12: 4525–4535

    PubMed  CAS  Google Scholar 

  64. Jentsch JD, Taylor JR (2001) Impaired inhibition of conditioned responses produced by subchronic administration of phencyclidine to rats. Neuropsychopharmacology 24: 66–74

    PubMed  CAS  Google Scholar 

  65. Joseph MH, Datla KP, Young AMJ (2003) The interpretation of the measurement of nucleus accumbens dopamine by in vivo dialysis: the kick, the craving or the cognition? Neurosci Biobehav Rev 27: 527–541

    PubMed  CAS  Google Scholar 

  66. Kalivas PW, Churchill L, Klitenic MA (1993) The circuitry mediating the translation of motivational stimuli into adaptive motor response. In: Kalivas PW, Barnes CD (eds) Limbic motor circuits and neuropsychiatry. CRC Press, Boca Raton, FL, pp 237–275

    Google Scholar 

  67. Karachi C, Yelnik J, Tande D, Tremblay L, Hirsch E, Francois C (2005) The pallidosubthalamic projection: an anatomical substrate for non-motor functions of the subthalamic nucleus in primates. Mov Disord 20: 172–180

    PubMed  Google Scholar 

  68. Kelley AE (1999) Neural integrative activities of nucleus accumbens subregions in relation to learning and motivation. Psychobiology 27: 198–213

    Google Scholar 

  69. Kemp JM, Powell TPS (1970) The cortico-striate projection in the monkey. Brain 93: 525–546

    PubMed  CAS  Google Scholar 

  70. Kiyatkin EA, Stein EA (1995) Fluctuations in nucleus accumbens dopamine during cocaine self-administration behavior: an in vivo electrochemical study. Neuroscience 64: 599–617

    PubMed  CAS  Google Scholar 

  71. Kleiner-Fisman G, Fisman DN, Sime E, Saint-Cyr JA, Lozano AM, Lang AE (2003) Long-term follow up of bilateral deep brain stimulation of the subthalamic nucleus in patients with advanced Parkinson’s disease. J Neurosurg 99: 489–495

    PubMed  Google Scholar 

  72. Kluver H, Bucy PC (1938) An analysis of certain effects of bilateral temporal lobectomy in the rhesus monkey, with special reference to “psychic blindness”. J Physiol (London) 5: 33–54

    Google Scholar 

  73. Koch M, Schmid A, Schnitzler H-U (1996) Pleasure-attentuation of startle is disrupted by lesions of the nucleus accumbens. NeuroReport 7: 1442–1446

    PubMed  CAS  Google Scholar 

  74. Koob GF (1992) Neurobiological mechanisms of cocaine and opiate dependence. In: O’Brien CP, Faffe JH (eds) Addictive states. Raven Press, New York, NY, pp 171–191

    Google Scholar 

  75. Koob GF, Nestler EJ (1997) The neurobiology of drug addiction. J Neuropsychiatry Clin Neurosci 9: 482–497

    PubMed  CAS  Google Scholar 

  76. Lapper SR, Bolam JP (1992) Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience 51: 533–545

    PubMed  CAS  Google Scholar 

  77. Lavoie B, Parent A (1994) Pedunculopontine nucleus in the squirrel monkey: cholinergic and glutamatergic projections to the substantia nigra. J Comp Neurol 344: 232–241

    PubMed  CAS  Google Scholar 

  78. Lavoie B, Parent A (1994) Pedunculopontine nucleus in the squirrel monkey: distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons. J Comp Neurol 344: 190–209

    PubMed  CAS  Google Scholar 

  79. Lavoie B, Parent A (1994) Pedunculopontine nucleus in the squirrel monkey: projections to the basal ganglia as revealed by anterograde tract-tracing methods. J Comp Neurol 344: 210–231

    PubMed  CAS  Google Scholar 

  80. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23: 155–184

    PubMed  CAS  Google Scholar 

  81. Limousin P, Pollak P, Benazzouz A, Hoffmann D, Le Bas JF, Broussolle E, Perret JE, Benabid AL (1995) Effects on parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345: 91–95

    PubMed  CAS  Google Scholar 

  82. Litvan I (2001) Personality and behavioral changes with frontal subcortical dysfunction. In: Lichter D, Cummings JL (eds) Frontal subcortical circuits in psychiatric and neurological disorders. Guilford Press, New York, pp 151–162

    Google Scholar 

  83. Lynd-Balta E, Haber SN (1994) Primate striatonigral projections: a comparison of the sensorimotor-related striatum and the ventral striatum. J Comp Neurol 345: 562–578

    PubMed  CAS  Google Scholar 

  84. MacLean PD (1949) Psychosomatic disease and the “visceral brain”: recent developments bearing on the Papez theory of emotion. Psychosom Med 11: 338–353

    PubMed  CAS  Google Scholar 

  85. MacLean PD (1954) The limbic system and its hippocampal formation. J Neurosurg 11: 29–44

    PubMed  CAS  Google Scholar 

  86. Mallet L, Mesnage V, Houeto JL, Pelissolo A, Yelnik J, Behar C, Gargiulo M, Welter ML, Bonnet AM, Pillon B, Cornu P, Dormont D, Pidoux B, Allilaire JF, Agid Y (2002) Compulsions, Parkinson’s disease, and stimulation. Lancet 360: 1302–1304

    PubMed  Google Scholar 

  87. Mayberg HS (1994) Frontal lobe dysfunction in secondary depression. J Neuropsychiatry Clin Neurosci 6: 428–442

    PubMed  CAS  Google Scholar 

  88. Mayberg HS, Starkstein SE, Sadzot B, Preziosi T, Andrezejewski PL, Dannals RF, Wagner HN, Robinson RG (1990) Selective hypometabolism in the inferior frontal lobe in depressed patients with Parkinson’s disease. Ann Neurol 28: 57–64

    PubMed  CAS  Google Scholar 

  89. McGaugh JL (2002) Memory consolidation and the amygdala: a systems perspective. Trends Neurosci 25: 456–461

    PubMed  CAS  Google Scholar 

  90. Mega MS, Cummings JL, Salloway S, Malloy P (1997) The limbic system: an anatomic, phylogenetic and clinical perspective. J Neuropsychiatry Clin Neurosci 9: 315–330

    PubMed  CAS  Google Scholar 

  91. Middleton F, Strick P (2002) Basal-ganglia ‘projections’ to the prefrontal cortex of the primate. Cerebral Cortex 12: 926–935

    PubMed  Google Scholar 

  92. Mindham RHS (1970) Psychiatric symptoms in parkinsonism. J Neurol Neurosurg Psychiatry 33: 181–191

    Google Scholar 

  93. Mogenson GJ, Brudzynski SM, Wu M, Yang CR, Yim CCY (1993) From motivation to action: a review of dopaminergic regulation of limbic-nucleus accumbens-ventral pallidum-pedunculopontine nucleus circuitries involved in limbic motor integration. In: Kalivas PW, Barnes CD (eds) Limbic motor circuits and neuropsychiatry. CRC Press, Boca Raton, FL, pp 237–287

    Google Scholar 

  94. Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14: 69–97

    PubMed  CAS  Google Scholar 

  95. Morgane PJ, Galler JR, Mokler DJ (2005) A review of systems and networks of the limbic forebrain/limbic midbrain. Prog Neurobiol 75: 143–160

    PubMed  Google Scholar 

  96. Nakano K, Kayahara T, Ushiro H, Hasegawa Y (1995) Some aspects of basal ganglia-thalamocortical circuity and descending outputs of the basal ganglia. In: Segawa M, Nomura Y (eds) Age-related dopamine-dependent disorders. Monogr Neural Sci, Karger, Basel 14: 134–146

    Google Scholar 

  97. Nauta WJH (1958) Hippocampal projections and related neuronal pathways to the mid-brain in the cat. Brain 81: 319–340

    PubMed  CAS  Google Scholar 

  98. Nauta WJH, Domesick VB (1981) Ramifications of the limbic system. In: Matthysse S (ed) Psychiatry and the biology of the human brain. Elsevier, New York, pp 165–188

    Google Scholar 

  99. O’Rahilly R, Muller F (1994) The embryonic human brain. Wiley-Liss, New York

    Google Scholar 

  100. Okun MS, Bowers D, Springer U, Shapira NA, Malone D, Rezai AR, Nuttin B, Heilman KM, Morecraft RJ, Rasmussen SA, Greenberg BD, Foote KD, Goodman WK (2004) What’s in a “smile?” Intra-operative observations of contralateral smiles induced by deep brain stimulation. Neurocase 10: 271–279

    PubMed  Google Scholar 

  101. Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47: 419–429

    PubMed  CAS  Google Scholar 

  102. Ongur D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10: 206–219

    PubMed  CAS  Google Scholar 

  103. Papez JW (1937) A proposed mechanism for emotion. Arch Neurol Psychiatry 38: 725–743

    Google Scholar 

  104. Parent A (1986) Comparative neurobiology of basal ganglia. John Willey & Sons, New York, NY

    Google Scholar 

  105. Parent A (1990) Extrinsic connections of the basal ganglia. Trends Neurosci 13: 254–258

    PubMed  CAS  Google Scholar 

  106. Parent A, De Bellefeuille L (1982) Organization of efferent projections from the internal segment of globus pallidus in primate as revealed by fluorescence retrograde labeling method. Brain Res 245: 201–213

    PubMed  CAS  Google Scholar 

  107. Parent A, Hazrati LN (1994) Multiple striatal representation in primate substantia nigra. J Comp Neurol 344: 305–320

    PubMed  CAS  Google Scholar 

  108. Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20: 91–127

    PubMed  CAS  Google Scholar 

  109. Parent A, Mackey A, Smith Y, Boucher R (1983) The output organization of the substantia nigra in primate as revealed by a retrograde double labeling method. Brain Res Bull 10: 529–537

    PubMed  CAS  Google Scholar 

  110. Parent A, Bouchard C, Smith Y (1984) The striatopallidal and striatonigral projections: two distinct fiber systems in primate. Brain Res 303: 385–390

    PubMed  CAS  Google Scholar 

  111. Parent A, Smith Y, Filion M, Dumas J (1989) Distinct afferents to internal and external pallidal segments in the squirrel monkey. Neurosci Lett 96: 140–144

    PubMed  CAS  Google Scholar 

  112. Parent M, Levesque M, Paren A (2001) Two types of projection neurons in the internal pallidum of primates: single-axon tracing and three-dimensional reconstruction. J Comp Neurol 439: 162–175

    PubMed  CAS  Google Scholar 

  113. Passingham RE (1996) Attention to action. Philos Trans R Soc Lond B Biol Sci 351: 1473–1479

    PubMed  CAS  Google Scholar 

  114. Phillips ML, Drevets WC, Rauch SL, Lane R (2003) Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiatry 54: 504–514

    PubMed  Google Scholar 

  115. Rauch SL, Jenike MA, Alpert NM, Baer L, Breiter HC, Savage CR, Fischman AJ (1994) Regional cerebral blood flow measured during symptom provocation in obsessive-compulsive disorder using oxygen 15-labeled carbon dioxide and positron emission tomography. Arch Gen Psychiatry 51: 62–70

    PubMed  CAS  Google Scholar 

  116. Redgrave P, Prescott TJ, Gurney K (1999) Is the short-latency dopamine response too short to signal reward error? Trends Neurosci 22: 146–151

    PubMed  CAS  Google Scholar 

  117. Ring HA, Bench CJ, Trimble MR, Brooks DJ, Frackowiak RS, Dolan RJ (1994) Depression in Parkinson’s disease. A positron emission study. Br J Psychiatry 165: 333–339

    PubMed  CAS  Google Scholar 

  118. Robbins AH (1976) Depression in patients with Parkinson’s disease. Br J Psychiatry 128: 141–145

    Google Scholar 

  119. Robbins TW, Sahakian BJ (1983) Behavioural effects of psychomotor stimulant drugs: clinical and neuropsychological implications. In: Ceese I (ed) Stimulants: neurochemical, behavioral, and clinical perspectives. Raven Press, New York, pp 301–338

    Google Scholar 

  120. Robbins TW, Cador M, Taylor JR, Everit BJ (1989) Limbic-striatal interactions in reward-related processes. Neurosci Beobehav Rev 13: 155–162

    CAS  Google Scholar 

  121. Russchen FT, Bakst I, Amaral DG, Price JL (1985) The amygdalostriatal projections in the monkey. An anterograde tracing study. Brain Res 329: 241–257

    PubMed  CAS  Google Scholar 

  122. Sadikot AF, Parent A, François C (1992) Efferent connections of the centromedian and parafascicular thalamic nuclei in squirrel monkey: I. A PHA-L study of subcortical projections. J Comp Neurol 315: 137–159

    PubMed  CAS  Google Scholar 

  123. Sadikot AD, Parent A, Smith Y, Bolam JP (1992) Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a light and electron microscopic study of the thalamostriatal projection in relation to striatal heterogeneity. J Comp Neurol 320: 228–242

    PubMed  CAS  Google Scholar 

  124. Saint-Cyr JA, Trepanier LL, Kumar R, Lozano AM, Lang AE (2000) Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson’s disease. Brain 123: 2091–2108

    PubMed  Google Scholar 

  125. Sakas DE, Panourias IG (2006) Rostral cingulate gyrus: a putative target for deep brain stimulation in treatment-refractory depression. Med Hypoth 66: 491–494

    Google Scholar 

  126. Saxena S, Rauch SL (2000) Functional neuroimaging and the neuroanatomy of obsessive-compulsive disorder. Psychiatr Clin North Am 23: 563–586

    PubMed  CAS  Google Scholar 

  127. Saxena S, Brody AL, Schwartz JM, Baxter LR (1998) Neuroimaging and frontalsubcortical circuitry in obsessive-compulsive disorder. Br J Psychiatry Suppl 35: 26–37

    PubMed  Google Scholar 

  128. Schultz W (1997) Dopamine neurons and their role in reward mechanisms. Curr Opin Neurobiol 7: 191–197

    PubMed  CAS  Google Scholar 

  129. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275: 1593–1599

    PubMed  CAS  Google Scholar 

  130. Schwatz JM, Stoessel PW, Baxter LR, Martin KM, Phelps ME (1996) Systematic cerebral glucose metabolic rate changes after successful behavior modification treatment of obsessibe — compulsive disorder. Arch Gen Psychiatry 53: 109–113

    Google Scholar 

  131. Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5: 776–794

    PubMed  CAS  Google Scholar 

  132. Sesack SR, Pickel VM (1992) Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J Comp Neurol 320: 145–160

    PubMed  CAS  Google Scholar 

  133. Shapira NA, Okun MS, Wint D, Foote KD, Byars JA, Bowers D, Springer US, Lang PJ, Greenberg BD, Haber SN, Goodman WK (2006) Panic and fear induced by deep brain stimulation. J Neurol Neurosurg Psychiatry 77: 410–412

    PubMed  CAS  Google Scholar 

  134. Spanagel R, Weiss F (1999) The dopamine hypothesis of reward: past and current status. Trends Neurosci 22: 521–527

    PubMed  CAS  Google Scholar 

  135. Starkstein SE, Robinson RG (1989) Affective disorders and cerebral vascular disease. Br J Psychiatry 154: 170–182

    PubMed  CAS  Google Scholar 

  136. Stathis P, Antoniou K, Papadopoulou-Daifotis Z, Rimikis M, Varonos D (1996) Risperidone: a novel antipsychotic with many atypical properties. Psychopharmacology 127: 181–186

    PubMed  CAS  Google Scholar 

  137. Stein EA, Pankiewicz J, Harsch HH, Cho JK, Fuller SA, Hoffmann RG, Hawkins M, Rao SM, Bandettini PA, Bloom AS (1998) Nicotine-induced limbic cortical activation in the human brain: a functional MRI study Am J Psychiatry 155: 1009–1015

    PubMed  CAS  Google Scholar 

  138. Swerdlow NR, Koob GF (1987) Dopamine, schizophrenia, mania, and depression: toward a unified hypothesis of cortico-striatothalamic function. Behav Brain Sci 10: 197–245

    Google Scholar 

  139. Tanda G, Carboni E, Frau R, Di Chiara G (1994) Increase of extracellular dopamine in the prefrontal cortex: a trait of drugs with antidepressant potential? Psychopharmacology 115: 285–288

    PubMed  CAS  Google Scholar 

  140. Tass PA, Klosterkotter J, Schneider F, Lenartz D, Koulousakis A, Sturm V (2003) Obsessive-compulsive disorder: development of demand-controlled deep brain stimulation with methods from stochastic phase resetting. Neuropsychopharmacology 28Suppl 1: S27–S34

    PubMed  Google Scholar 

  141. Tekin S, Cummings JL (2002) Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update. J Psychosom Res 53: 647–654

    PubMed  Google Scholar 

  142. van Kuyck K, Demeulemeester H, Feys H, De Weerdt W, Dewil M, Tousseyn T, De Sutter P, Gybels J, Bogaerts K, Dom R, Nuttin B (2003) Effects of electrical stimulation or lesion in nucleus accumbens on the behaviour of rats in a T-maze after administration of 8-OH-DPAT or vehicle. Behav Brain Res 140: 165–173

    PubMed  Google Scholar 

  143. Vandewalle V, van der Linden C, Groenewegen HJ, Caemaert J (1999) Stereotactic treatment of Gilles de la Tourette syndrome by high frequency stimulation of thalamus [letter]. Lancet 353: 724

    PubMed  CAS  Google Scholar 

  144. Volkow ND, Fowler JS, Wolf AP, Schlyer D, Shiue CY, Alpert R, Dewey SL, Logan J, Bendriem B, Christman D et al (1990) Effects of chronic cocaine abuse on postsynaptic dopamine receptors. Am J Psychiatry 147: 719–724

    PubMed  CAS  Google Scholar 

  145. Wichmann T, DeLong MR (1993) Pathophysiology of parkinsonian motor abnormalities. Adv Neurol 60: 53–61

    PubMed  CAS  Google Scholar 

  146. Willner P (1995) Dopaminergic mechanisms in depression and mania. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven Press, New York, pp 921–932

    Google Scholar 

  147. Wise RA, Newton P, Leeb K, Burnette B, Pocock D, Justice JB (1995) Fluctuations in nucleus accumbens dopamine concentration during intravenous cocaine self-administration in rats. Psychopharmacology 120: 10–20

    PubMed  CAS  Google Scholar 

  148. Yelnik J (2002) Functional anatomy of the basal ganglia. Mov Disord 17Suppl: S15–S21

    PubMed  Google Scholar 

  149. Yelnik J, Percheron G (1979) Subthalamic neurons in primates: a quantitative and comparative analysis. Neuroscience 4: 1717–1743

    PubMed  CAS  Google Scholar 

  150. Yelnik J, François C, Percheron G, Tandé D (1996) A spatial and quantitative study of the striatopallidal connection in the monkey. Neuroreport 7: 985–988

    PubMed  CAS  Google Scholar 

  151. Yeterian EH, Pandya DN (1998) Corticostriatal connections of the superior temporal region in rhesus monkeys. J Comp Neurol 399: 384–402

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damianos E. Sakas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this chapter

Cite this chapter

Stathis, P., Panourias, I.G., Themistocleous, M.S., Sakas, D.E. (2007). Connections of the basal ganglia with the limbic system: implications for neuromodulation therapies of anxiety and affective disorders. In: Sakas, D.E., Simpson, B.A. (eds) Operative Neuromodulation. Acta Neurochirurgica Supplements, vol 97/2. Springer, Vienna. https://doi.org/10.1007/978-3-211-33081-4_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-33081-4_67

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-33080-7

  • Online ISBN: 978-3-211-33081-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics