Skip to main content

Trimodal nanoelectrode array for precise deep brain stimulation: prospects of a new technology based on carbon nanofiber arrays

  • Chapter
Operative Neuromodulation

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 97/2))

Abstract

Although deep brain stimulation (DBS) has recently been shown to be effective for neurological disorders such as Parkinson’s disease, there are many limitations of the current technology: the large size of current microelectrodes (∼1mm diameter); the lack of monitoring of local brain electrical activity and neurotransmitters (e.g. dopamine in Parkinson’s disease); the open-loop nature of the stimulation (i.e. not guided by brain electrochemical activity). Reducing the size of the monitoring and stimulating electrodes by orders of magnitude (to the size of neural elements) allows remarkable improvements in both monitoring (spatial resolution, temporal resolution, and sensitivity) and stimulation. Carbon nanofiber nanoelectrode technology offers the possibility of trimodal arrays (monitoring electrical activity, monitoring neurotransmitter levels, precise stimulation). DBS can then be guided by changes in brain electrical activity and/or neurotransmitter levels (i.e. closed-loop DBS). Here, we describe the basic manufacture and electrical characteristics of a prototype nanoelectrode array for DBS, as well as preliminary studies with electroconductive polymers necessary to optimize DBS in vivo. An approach such as the nanoelectrode array described here may offer a generic electrical-neural interface for use in various neural prostheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson T, Hu B, Pittman Q, Kiss Z (2004) Mechanisms of deep brain stimulation: an intracellular study in rat thalamus. J Physiol 559: 301–313

    Article  PubMed  CAS  Google Scholar 

  2. Baker KB, Mongomery EB, Rezai A, Burgess R, Luders HO (2002) Subthalamic nucleus deep brain stimulation evoked potentials: physiological and therapeutic implications. Mov Disord 17: 969–983

    Article  PubMed  Google Scholar 

  3. Benabid AL, Benazzous A, Pollak P (2002) Mechanisms of deep brain stimulation. Mov Disord 17Suppl 3: S73–S74

    Article  PubMed  Google Scholar 

  4. Coubes P, Roubertie A, Vayssiere N, Hemm S, Echenne B (2000) Treatment of DYT1-generalised dystonia by stimulation of the internal globus pallidus. Lancet 355: 2220–2221

    Article  PubMed  CAS  Google Scholar 

  5. Cui X, Lee VA, Raphael Y, Wiler JA, Hetke JF, Anderson DJ, Martin DC (2001) Surface modification of neural recording electrodes with conducting polymer/biomolecules blends. J Biomed Mater Res 56: 261–272

    Article  PubMed  CAS  Google Scholar 

  6. Dinner DS, Neme S, Nair D, Mongomery EB, Baker KB, Rezai A, Luders HO (2002) Clin Neurophysiol 113: 1391–1402

    Article  PubMed  Google Scholar 

  7. Dostrovsky JO, Lozano AM (2002) Mechanisms of deep brain stimulation. Mov Disord 17Suppl 3: S63–S68

    Article  PubMed  Google Scholar 

  8. Gabriels LA, Cosyns PR, Meyerson BA, Andreewitch S, Sunaert SG, Maes AF, Dupont PJ, Gybels JM, Gielen F, Demeulemeester HG (2003) Long-term electrical capsular stimulation in patients with obsessive-compulsive disorder. Neurosurgery 52: 1263–1274

    PubMed  Google Scholar 

  9. Gheith MK, Sinani VA, Wicksted JP, Matts RL, Kotov NA (2005) Single-walled carbon nanotube polyelectrolyte multilayers and freestanding films as a biocompatible platform for neuroprosthetic implants. Adv Mater 17: 2663–2670

    Article  CAS  Google Scholar 

  10. Gybels JM, Sweet WH (1989) Neurosurgical treatment of persistent pain. Physiological and pathological mechanisms of human pain. Pain and Headache 11: 1–402

    PubMed  CAS  Google Scholar 

  11. Hodaie M, Wennberg RA, Dostrovsky JO, Lozano AM (2002) Chronic anterior thalamus stimulation for intractable epilepsy. Epilepsia 43: 603–608

    Article  PubMed  Google Scholar 

  12. Lee K, Chang S-Y, Roberts DW, Kim U (2004) Neurotransmitter release from high-frequency stimulation of the subthalamic nucleus. J Neurosurg 101: 511–517

    PubMed  CAS  Google Scholar 

  13. Lee KH, Hitti FL, Shalinsky MH, Kim U, Leiter JC, Roberts DW (2005) Abolition of spindle oscillations and 3-Hz absence seizure-like activity in the thalamus by using hig-frequency stimulation: potential mechanism of action. J Neurosurg 103: 538–545

    PubMed  Google Scholar 

  14. Li J, Ng HT, Cassell A, Fan W, Chen H, Ye Q, Koehne J, Han J, Meyyappan M (2003) Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett 3: 597–602

    Article  CAS  Google Scholar 

  15. Li J, Koehne JE, Cassell AM, Chen H, Ng HT, Ye Q, Fan W, Han J, Meyyappan M (2005) Inlaid multi-walled carbon nanotube nanoelectrode arrays for electroanalysis. Electroanalysis 17: 15–27

    Article  CAS  Google Scholar 

  16. Lin Y, Lu F, Tu Y, Ren ZF (2004) Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett 4: 191–195

    Article  CAS  Google Scholar 

  17. Lovat V, Pantarotto D, Lagostena L, Cacciar B, Grandolfo M, Righi M, Spalluto G, Prato M, Ballerini L (2005) Carbon nanotubes substrates boost neuronal electrical signaling. Nano Lett 5: 1107–1110

    Article  PubMed  CAS  Google Scholar 

  18. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistent depression. Neuron 45: 651–660

    Article  PubMed  CAS  Google Scholar 

  19. McIntyre CC, Savasta M, Walter BL, Vitek JL (2004) How does deep brain stimulation work? Present understanding and future questions. J Clin Neurophysiol 21: 40–50

    Article  PubMed  Google Scholar 

  20. Merrill DR, Bikson M, Jefferys JGR (2005) Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods 141: 171–198

    Article  PubMed  Google Scholar 

  21. Meyyappan M (2004) Carbon nanotubes: science and applications. CRC Press

    Google Scholar 

  22. Nam Y, Chang J, Khatami D, Brewer GJ, Wheeler BC (2004) Patterning to enhance activity of cultured neuronal networks. IEE Proc Nanobiotechnol 151: 109–115

    Article  PubMed  CAS  Google Scholar 

  23. Nguyen-Vu TDB, Chen H, Cassell AM, Andrews R, Meyyappan M, Li J (2006) Vertically aligned carbon nanofiber arrays; an advance toward electrical-neural interfaces. Small 2: 89–94

    Article  PubMed  CAS  Google Scholar 

  24. Nowak LG, Bullier J (1998) Axons, but not cell bodies, are activated by electrical stimulation in cortical gram matter I. Evidence from chronaxie measurements. Exp Brain Res 118: 477–488

    Article  PubMed  CAS  Google Scholar 

  25. Obeso JA, Olanow CW, Rodriguez-Oroz MC, Krack P, Kumar R, Lang AE (2001) Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med 345: 956–963

    Article  Google Scholar 

  26. Phillips PEM, Stuber GD, Heien MLAV, Wightman RM, Carelli RM (2003) Subsecond dopamine release promotes cocaine seeking. Nature 422: 614–618

    Article  PubMed  CAS  Google Scholar 

  27. Ranck JB (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98: 417–440

    Article  PubMed  Google Scholar 

  28. Service RF (2005) Calls rise for more research on toxicology of nanomaterials. Science 310: 1609

    Article  PubMed  CAS  Google Scholar 

  29. Tass PA, Klosterkotter J, Schneider F, Lenartz D, Koulousakis A, Sturm V (2003) Obsessive-compulsive disorder: development of demand-controlled deep brain stimulation with methods from stochastic phase resetting. Neuropsychopharmacology 28: S27–S34

    Article  PubMed  Google Scholar 

  30. Usui N, Maesawa S, Kajita Y, Endo O, Takebayashi S, Yoshida J (2005) Suppression of secondary generalization of limbic seizures by stimulation of subthalamic nucleus in rats. J Neurosurg 102: 1122–1129

    Article  PubMed  Google Scholar 

  31. Venton BJ, Wightman RM (2003) Psychoanalytical electrochemistry: dopamine and behavior. Anal Chem 75: 414A–421A

    CAS  Google Scholar 

  32. Weiland JD, Anderson DJ (2000) Chronic neural stimulation with thin-film, iridium oxide electrodes. IEEE Trans Biomed Eng 47: 911–918

    Article  PubMed  CAS  Google Scholar 

  33. Windels F, Bruet N, Poupard A, Urbain N, Chouvet G, Feuerstein C, Savasta M (2000) Effects of high frequency stimulation of subthalamic nucleus on extracellular glutamate and GABA in substantia nigra and globus pallidus in the normal rat. Eur J Neurosci 12: 4141–4146

    Article  PubMed  CAS  Google Scholar 

  34. Windels F, Bruet N, Poupard A, Feuerstein C, Bertrand A, Savasta M (2003) Influence of the frequency parameter on extracellular glutamate and gamma-aminobutyric acid in substania nigra and globus pallidus during electrical stimulation of subthalamic nucleus in rats. J Neurosci Res 72: 259–267

    Article  PubMed  CAS  Google Scholar 

  35. You T, Niwa O, Kurita R, Iwasaki Y, Hayashi K, Suzuki K, Hirono S (2004) Reductive H2O2 detection at nanoparticle iridium/carbon film electrode and its application as l-glutamate enzyme sensor. Electroanalysis 16: 54–59

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell J. Andrews .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this chapter

Cite this chapter

Li, J., Andrews, R.J. (2007). Trimodal nanoelectrode array for precise deep brain stimulation: prospects of a new technology based on carbon nanofiber arrays. In: Sakas, D.E., Simpson, B.A. (eds) Operative Neuromodulation. Acta Neurochirurgica Supplements, vol 97/2. Springer, Vienna. https://doi.org/10.1007/978-3-211-33081-4_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-33081-4_62

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-33080-7

  • Online ISBN: 978-3-211-33081-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics