Skip to main content

Computational models simulating electrophysiological activity in the basal ganglia

  • Chapter
Operative Neuromodulation

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 97/2))

Abstract

Modeling of the basal ganglia has played a substantial role in gaining insight into the mechanisms involved in the computational processes performed by this elusive group of nuclei. Models of the basal ganglia have undergone revolutionary changes over the last twenty years due to the rapid accumulation of neuroscientific data. In this chapter, we present distinct modeling approaches that can be used to enhance our understanding of the functional dynamics of information processing within the basal ganglia, and their interactions with the rest of the brain. Specific examples of recently developed models dealing with the analysis of computational processing issues at different structural levels of the basal ganglia are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albin R, Young A, Penney J (1989) Functional anatomy of basal ganglia disorders. Trends Neurosci 12: 366–375

    Article  PubMed  CAS  Google Scholar 

  2. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: 357–381

    Article  PubMed  CAS  Google Scholar 

  3. Amini B, Clark JW Jr, Canavier CC (1999) Calcium dynamics underlying pacemaker-like and burst firing oscillations in midbrain dopaminergic neurons: a computational study. J Neurophysiol 82: 2249–2261

    PubMed  CAS  Google Scholar 

  4. Bar-Gad I, Morris G, Bergman H (2003) Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Progr Neurobiol 71: 439–473

    Article  Google Scholar 

  5. Barto AG (1995) Adaptive critics and the basal ganglia. In: Houk JC, Davis J, Beiser DG (eds) Models of informations processing in the basal hanglia. MIT Press, Cambridge MA, pp 215–232

    Google Scholar 

  6. Beiser DG, Hua SE, Houk JC (1997) Network models of the basal ganglia. Curr Opin Neurobiol 7: 187–190

    Article  Google Scholar 

  7. Beiser DG, Houk JC (1998) Model of cortical-basal ganglionic processing: encoding the serial order of sensory events. J Neurophysiol 79: 3168–3188

    PubMed  CAS  Google Scholar 

  8. Berns GS, Sejnowski TJ (1998) A computational model of how the basal ganglia produce sequences. J Cogn Neurosci 10: 108–121

    Article  PubMed  CAS  Google Scholar 

  9. Canavier CC (1999) Sodium dynamics underlying burst firing and putative mechanisms for the regulation of the firing pattern in midbrain dopamine neurons: a computational approach. J Comput Neurosci 6: 49–69

    Article  PubMed  CAS  Google Scholar 

  10. Chavarriaga R, Strosslin T, Sheynikhovich D, Gerstner W (2005) A computational model of parallel navigation systems in rodents. Neuroinformatics 3: 223–242

    Article  PubMed  Google Scholar 

  11. Dominey P (1995) Complex sensory-motor sequence learning based on recurrent state representation and reinforcement learning. Biol Cybern 73: 265–274

    Article  PubMed  CAS  Google Scholar 

  12. Fukai T (1999) Sequence generation in arbitrary temporal patterns from theta-nested gamma oscillations: a model of the basal ganglia-thalamocortical loops. Neural Networks 12: 975–987

    Article  PubMed  Google Scholar 

  13. Gillies A, Arbuthnott G (2000) Computational models of the basal ganglia. Mov Dis 15: 762–770

    Article  CAS  Google Scholar 

  14. Gillies A, Willshaw D (2004) Models of the subthalamic nucleus. The importance of intranuclear connectivity. Med Eng Physics 26: 723–732

    Article  CAS  Google Scholar 

  15. Gillies A, Willshaw D (2006) Membrane channel interactions underlying rat subthalamic projection neuron rhythmic and bursting activity. J Neurophysiol 95: 2352–2365

    Article  PubMed  Google Scholar 

  16. Gillies A, Willshaw D, Li Z (2002) Subthalamic-pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia. Proceedings of the Royal Society: Biological Sciences 269: 545–551

    Article  Google Scholar 

  17. Gruber AJ, Solla SA, Surmeier DJ, Houk JC (2003) Modulation of striatal single units by expected reward: a spiny neuron model displaying dopamine-induced bistability. J Neurophysiol 90: 1095–1114

    Article  PubMed  Google Scholar 

  18. Gurney KN, Prescott T, Redgrave P (2001) A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biol Cybern 84: 401–410

    Article  PubMed  CAS  Google Scholar 

  19. Gurney KN, Prescott T, Redgrave P (2001) A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. Biol Cybern 84: 411–423

    Article  PubMed  CAS  Google Scholar 

  20. Gurney KN, Overton PG (2004) A model of short and long range selective processing in neostriatum. Neurocomputing 58–60: 555–562

    Article  Google Scholar 

  21. Gurney KN, Prescott T, Wickens J, Redgrave P (2004) Computational models of the basal ganglia: from robots to membranes. Trends Neurosci 27: 453–459

    Article  PubMed  CAS  Google Scholar 

  22. Hanson JE, Smith Y, Jaeger D (2004) Sodium channels and dendritic spike initiation at excitatory synapses in globus pallidus neurons. J Neurosci 24: 329–340

    Article  PubMed  CAS  Google Scholar 

  23. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500–544

    PubMed  CAS  Google Scholar 

  24. Houk JC, Adams JL, Barto AG (1995) A model of how the basal ganglia generate and use neural signals that predict reinforcement. In: Houk JC, Davis JL, Beiser DG (eds) Models of information processing in the basal ganglia. MIT Press, Cambridge MA, pp 249–270

    Google Scholar 

  25. Itoh H, Aihara K (1999) Combination of actor-critic algorithm with the goal-directed reasoning. Proceedings of the 6th International Conference on Neural Information Processing, 777–782

    Google Scholar 

  26. Joel D, Niv J, Ruppin E (2002) Actor-critic models of the basal ganglia: new anatomical and computational perspectives. Neural Networks 15: 535–547

    Article  PubMed  Google Scholar 

  27. Kitano K, Cateau H, Kaneda K, Nambu A, Takada M, Fukai T (2002) Two-state membrane potential transitions of striatal spiny neurons as evidenced by numerical simulations and electrophysiological recordings in awake monkeys. J Neurosci 22: RC230

    PubMed  Google Scholar 

  28. Kotter R, Wickens J (1998) Striatal mechanisms in Parkinson’s disease: new insights from computer modeling. Artif Intell Med 13: 37–55

    Article  PubMed  CAS  Google Scholar 

  29. Kropotov JD, Etlinger SC (1999) Selection of actions in the basal ganglia-thalamocortical circuits: review and model. Int J Psychophysiol 31: 197–217

    Article  PubMed  CAS  Google Scholar 

  30. Mahon S, Deniau JM, Charpier S, Delord B (2000) Role of a striatal slowly inactivating potassium current in short-term facilitation of corticostriatal inputs: a computer simulation study. Learn Mem 7: 357–362

    Article  PubMed  CAS  Google Scholar 

  31. Mink JW (1996) The basal ganglia: Focused selection and inhibition of competing motor programs. Progr Neurobiol 50: 381–425

    Article  CAS  Google Scholar 

  32. Montague PR, Dayan D, Sejnowski T (1996) A framework for mesencephalic dopamine systems based on predictive hebbian learning. J Neurosci 16: 1936–1947

    PubMed  CAS  Google Scholar 

  33. Parent A, Levesque M, Parent M (2001) Are-evaluation of the current model of the basal ganglia. Parkinsonism Relat Dis 7: 193–198

    Article  Google Scholar 

  34. Percheron G, Yelnik J, Francois C (1987) Spatial organization and information processing in the core of the basal ganglia. In: Carpenter MB, Jayaraman A (eds) The basal ganglia vol. II. Plenum Press, New York, pp 205–226

    Google Scholar 

  35. Smith AJ, Becker S, Kapur S (2005) A computational model of the functional role of the ventral-striatal D2 receptor in the expression of previously acquired behaviors. Neural Comput 17: 361–395

    Article  PubMed  Google Scholar 

  36. Suri RE, Schultz W (1998) Learning of sequential movements by neural network model with dopamine-like reinforcement signal. Exp Brain Res 121: 350–354

    Article  PubMed  CAS  Google Scholar 

  37. Suri RE (2002) TD models of reward predictive responses in dopamine neurons. Neural Networks 15: 523–533

    Article  PubMed  Google Scholar 

  38. Terman D, Rubin JE, Yew AC, Wilson CJ (2002) Activity patterns in a model for the Subthalamopallidal network of the basal ganglia. J Neurosci 22: 2963–2976

    PubMed  CAS  Google Scholar 

  39. Wichmann T, DeLong MR (1996) Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 6: 751–758

    Article  PubMed  CAS  Google Scholar 

  40. Wickens J, Arbuthnott G (1993) The corticostriatal system on computer simulation: an intermediate mechanism for sequencing of actions. Prog Brain Res 99: 325–339

    Article  PubMed  CAS  Google Scholar 

  41. Wickens J, Kotter R, Alexander ME (1995) Effects of local connectivity on striatal function. Synapse 20: 281–298

    Article  PubMed  CAS  Google Scholar 

  42. Wilson CJ, Callaway JC (2000) Coupled oscillatory model of the dopaminergic neuron of the substantia nigra. J Neurophysiol 83: 3084–3100

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantina S. Nikita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this chapter

Cite this chapter

Nikita, K.S., Tsirogiannis, G.L. (2007). Computational models simulating electrophysiological activity in the basal ganglia. In: Sakas, D.E., Simpson, B.A. (eds) Operative Neuromodulation. Acta Neurochirurgica Supplements, vol 97/2. Springer, Vienna. https://doi.org/10.1007/978-3-211-33081-4_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-33081-4_58

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-33080-7

  • Online ISBN: 978-3-211-33081-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics