Skip to main content

Restoring visual perception using microsystem technologies: engineering and manufacturing perspectives

  • Chapter
Operative Neuromodulation

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 97/2))

Abstract

Microsystem technologies offer significant advantages in the development of neural prostheses. In the last two decades, it has become feasible to develop intelligent prostheses that are fully implantable into the human body with respect to functionality, complexity, size, weight, and compactness. Design and development enforce collaboration of various disciplines including physicians, engineers, and scientists. The retina implant system can be taken as one sophisticated example of a prosthesis which bypasses neural defects and enables direct electrical stimulation of nerve cells. This micro implantable visual prosthesis assists blind patients to return to the normal course of life. The retina implant is intended for patients suffering from retinitis pigmentosa or macular degeneration.

In this contribution, we focus on the epiretinal prosthesis and discuss topics like system design, data and power transfer, fabrication, packaging and testing. In detail, the system is based upon an implantable micro electro stimulator which is powered and controlled via a wireless inductive link. Microelectronic circuits for data encoding and stimulation are assembled on flexible substrates with an integrated electrode array. The implant system is encapsulated using parylene C and silicone rubber. Results extracted from experiments in vivo demonstrate the retinotopic activation of the visual cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chow AY, Pardue MT, Perlman JI, Ball SL, Chow VY, Hetling JR, Peyman GA, Liang C, Stubbs EB Jr, Peachey NS (2002) Subretinal implantation of semiconductor-based photodiodes: durability of novel implant designs. J Rehabil Res Dev 39: 313–321

    PubMed  Google Scholar 

  2. Eckmiller R (1997) Learning retina implants with epiretinal contacts. Ophthalmic Res 29: 281–289

    Article  PubMed  CAS  Google Scholar 

  3. Grinvald A, Shoham D, Shmuel A, Glaser DE, Vanzetta I, Shtoyerman E, Slovin H, Wijnbergen C, Hildesheim R, Sterkin A, Arieli A (1999) In-vivo optical imaging of cortical architecture and dynamics. In: Windhorst U, Johansson H (eds) Modern techniques in neuroscience research. Springer, Berlin Heidelberg, pp 893–969

    Google Scholar 

  4. Dawson WW, Radtke ND (1977) The electrical stimulation of the retina by indwelling electrodes. Invest Ophthalmol Vis Sci 16: 249–252

    PubMed  CAS  Google Scholar 

  5. Hartline HK, Wagner HG, MacNichol Efjr (1952) The peripheral origin of nervous activity in the visual system. Cold Spr Harb Symp quant Biol 17: 125–141

    CAS  Google Scholar 

  6. Humayun MS, de Juan E Jr, Weiland JD, Dagnelie G, Katona S, Greenberg R, Suzuki S (1999) Pattern electrical stimulation of the human retina. Vision Res 39: 2569–2576

    Article  PubMed  CAS  Google Scholar 

  7. Hünermann R, Eckmiller R (1998) Implementation of tunable receptive field (RF) filters for learning retina implants. In: Niklasson LF, Bodén MB, Ziemke TB (eds) Proc of ICANN’98, Skövde. Springer, Berlin Heidelberg New York, pp 887–892

    Google Scholar 

  8. Krisch I, Görtz M, Trieu H-K, Mokwa W, Hosticka B-J (2003) Development and functional test of an epiretinal prosthesis. Applications — trends — visions. Proc of 2nd VDE World Microtechnologies Congress, October 13–15, 2003, International Congress Centre, Munich, Germany. VDE Verlag, Berlin, pp 233–238

    Google Scholar 

  9. Meyer JU, Stieglitz T, Scholz O, Haberer W, Beutel H (2001) High density interconnects and flexible hybrid assemblies for active biomedical implants. IEEE Trans Adv Pack 24: 366–374

    Article  Google Scholar 

  10. Mokwa W (2004) MEMs Technologies for epiretinal stimulation of the retina. J Micromech Microeng 14: S12–S16

    Article  CAS  Google Scholar 

  11. Schanze T, Wilms M, Eger M, Hesse L, Eckhorn R (2002) Activation zones in cat visual cortex evoked by electrical retina stimulation. Graefes Arch Clin Exp Ophthalmol 240: 947–954

    Article  PubMed  Google Scholar 

  12. Schwarz M, Hauschild R, Hosticka BJ, Huppertz J, Kneip T, Kolnsberg S, Ewe L, Trieu HK (2000) Single chip CMOS imagers and flexible microelectronic stimulators for a retina implant system. Sens Actuators 83: 40–46

    Article  Google Scholar 

  13. Slavcheva E, Ewe L, Schnakenberg U, Mokwa W (2002) Electrochemical characterisation of different biocompatible metallic materials as planar and 3D-electrodes in neural stimulation microarrays. Proc 2nd European Medical & Biological Engineering Conference, Vienna, pp 784–785

    Google Scholar 

  14. Stieglitz T, Beutel H, Schuettler M, Meyer JU (2000) Micromachined, polyimide-based devices for flexible neural interfaces. Biomed Microdev 2: 283–294

    Article  Google Scholar 

  15. Stieglitz T, Beutel H, Keller R, Blau C, Meyer JU (1997) Development of flexible stimulation devices for a retina implant system. Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 2307–2310

    Google Scholar 

  16. Stieglitz T (2004) Considerations on surface and structural biocompatibility as prerequisite for long-term stability of neural prostheses. J Nanosci Nanotech 4: 496–503

    Article  CAS  Google Scholar 

  17. Walter P, Szurman P, Vobig M, Berk H, Luedtke-Handjery HC, Richter H, Mittermayer C, Heimann K, Sellhaus B (1999) Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits. Retina 19: 546–552

    Article  PubMed  CAS  Google Scholar 

  18. Walter P, Kisvárday ZF, Görtz M, Alteheld N, Rössler G, Stieglitz T, Eysel UT (2005) Cortical activation with a completely implanted wireless retinal prosthesis. Invest Ophthalmol Vis Sci 46: 1780–1785

    Article  PubMed  Google Scholar 

  19. World Health Organisation (2005) Blindness and visual disability: other leading causes worldwide. Retrieved from http://www.who.int/mediacentre/factsheets/fs282/en/index.html

    Google Scholar 

  20. Zrenner E, Gekeler F, Gabel VP, Graf HG, Graf M, Guenther E, Haemmerle H, Hoefflinger B, Kobuch K, Kohler K, Nisch W, Sachs H, Schlosshauer B, Schubert M, Schwahn H, Stelle M, Stett A, Troeger B, Weiss S (2001) Subretinal microphotodiode array as replacement for degenerated photoreceptors? Ophthalmologe 98: 357–363

    Article  PubMed  CAS  Google Scholar 

  21. Retrieved from http://www.artificialvision.com

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Hosticka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag/Wien

About this chapter

Cite this chapter

Krisch, I., Hosticka, B.J. (2007). Restoring visual perception using microsystem technologies: engineering and manufacturing perspectives. In: Sakas, D.E., Simpson, B.A. (eds) Operative Neuromodulation. Acta Neurochirurgica Supplements, vol 97/2. Springer, Vienna. https://doi.org/10.1007/978-3-211-33081-4_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-33081-4_54

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-33080-7

  • Online ISBN: 978-3-211-33081-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics