Imaging in Carotid Artery Stenosis: Prospects to the Future

  • B. J. Schaller
  • M. Buchfelder


In recent years, the clinical impact has emphasized the need for a more detailed analysis of atherosclerotic plaques in carotid artery stenosis. Information beyond the resulting degree of narrowing of the vessel lumen on angiography seems to be desirable. Epidemiologic studies have shown that a large proportion of persons who have sudden ischemic events have no prior ischemic symptoms [43]. More importantly, it has been found that acute coronary syndromes often result from plaque rupture at sites with no or only modest luminal narrowing on angiography [64]; similar observations can be found in the coronary system [26]. Vascular remodelling has often occurred at such sites, which consists of atherosclerosis-associated morphologic and biologic changes of the vessel wall without significant stenosis [27]. Thus there is considerable demand for diagnostic procedures that specifically identify rupture-prone, vulnerable plaques as the most frequent cause of sudden ischemic events [44], [45], also in the cerebrovascular system.


Optical Coherence Tomography Atherosclerotic Plaque Atherosclerotic Lesion Cerebral Blood Volume Vulnerable Plaque 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    American Heart Association: Heart disease and stroke statistics — 2004 update. Dallas: American Heart Association (2004).Google Scholar
  2. [2]
    Barger AC, Beeuwkes R III, Lainey LL et al.: Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med 310: 175–177 (1984).PubMedCrossRefGoogle Scholar
  3. [3]
    Baumgartener H: Eine neue Methode zur Erzeugung von Thromben durch gezielte Überdehnung der Gefässwand. Zentralbl Gesamte Exp Med 137: 227–249 (1963).CrossRefGoogle Scholar
  4. [4]
    Blankenberg S, Rupprecht HJ, Bickel C et al.: Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N Engl J Med 349: 1605–1613 (2003).PubMedCrossRefGoogle Scholar
  5. [5]
    Brennan ML, Penn MS, Van Lente F et al.: Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med 349: 1595–1604 (2003).PubMedCrossRefGoogle Scholar
  6. [6]
    Brezinski ME, Tearney GJ, Bouma BE et al.: Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology. Circulation 93: 1206–1213 (1996).PubMedGoogle Scholar
  7. [7]
    Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R: Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 336: 1276–1282 (1997).PubMedCrossRefGoogle Scholar
  8. [8]
    Carpenter KL, Challis IR, Arends MJ. Mildly oxidised LDL induces more macrophage death than moderately oxidised LDL: roles of peroxidation, lipoprotein-associated phospholipase A2 and PPAR gamma. FEBS Lett 553: 145–150 (2003).PubMedCrossRefGoogle Scholar
  9. [9]
    Chen J, Tung CH, Mahmood U et al.: In vivo imaging of proteolytic activity in atherosclerosis. Circulation. 105: 2766–2771 (2002).PubMedCrossRefGoogle Scholar
  10. [10]
    Choudhury RP, Fuster V, Fayad ZA: Molecular, cellular and functional imaging of atherothrombosis. Nat Rev Drug Disc 3: 913–925 (2004).CrossRefGoogle Scholar
  11. [11]
    Davies MJ, Gordon JL, Gearing AJ et al.: The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. J Pathol 171: 223–229 (1993).PubMedCrossRefGoogle Scholar
  12. [12]
    Davies MJ, Thomas AC: Plaque fissuring — the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J 53: 363–373 (1985)PubMedGoogle Scholar
  13. [13]
    DeForge LE, Schwendner SW, DeGalan MR et al.: Noninvasive assessment of lipid disposition in treated and untreated atherosclerotic rabbits. Pharm Res 6: 1011–1016 (1989).PubMedCrossRefGoogle Scholar
  14. [14]
    de Korte CL, Carlier SG, Mastik F, Doyley MM, van der Steen AF, Serruys PW, Bom N: Morphological and mechanical information of coronary arteries obtained with intravascular elastography; feasibility study in vivo. Eur Heart J 23: 405–413 (2002).PubMedCrossRefGoogle Scholar
  15. [15]
    de Korte CL, van der Steen AF, Cespedes EI, Pasterkamp G: Intravascular ultrasound elastography in human arteries: initial experience in vitro. Ultrasound Med Biol 24: 401–408 (1998).PubMedCrossRefGoogle Scholar
  16. [16]
    Derdeyn CP, Grubb RL Jr, Powers WJ: Cerebral hemodynamic impairment: methods of measurement and association with stroke risk. Neurology 53: 251–259 (1999).PubMedGoogle Scholar
  17. [17]
    Derdeyn CP, Videen TO, Yundt KD et al.: Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain 125: 595–607 (2002).PubMedCrossRefGoogle Scholar
  18. [18]
    Dirnagl U, Pulsinelli W: Autoregulation of cerebral blood flow in experimental focal brain ischemia. J Cereb Blood Flow Metab 10: 327–336 (1990).PubMedGoogle Scholar
  19. [19]
    Executive Committee for the Asymptomatic Carotid Atherosclerosis Study.: Endarterectomy for asymptomatic carotid artery stenosis. JAMA 273: 1421–1428 (1995).CrossRefGoogle Scholar
  20. [20]
    Faggiotto A, Ross R, Harker L: Studies of hypercholesterolemia in the nonhuman primate. I. Changes that lead to fatty streak formation. Arteriosclerosis 4: 323–340 (1984).PubMedGoogle Scholar
  21. [21]
    Falati S, Gross P, Merill-Skoloff G et al.: Real time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat Med 8: 1175–1181 (2002).PubMedCrossRefGoogle Scholar
  22. [22]
    Falk E: Why do plaques rupture? Circulation 86: III30–III42 (1992).PubMedGoogle Scholar
  23. [23]
    Fayad ZA, Fuster V: Clinical imaging of the high-risk or vulnerable atherosclerotic plaque. Circ Res 89: 305–316 (2001).PubMedGoogle Scholar
  24. [24]
    Ferrari M, Wilson DA, Hanley DF et al.: Effects of graded hypotension on cerebral blood flow, blood volume, and mean transit time in dogs. Am J Physiol 262: H1908–H1914 (1992).PubMedGoogle Scholar
  25. [25]
    Fuster V, Badimon L, Badimon JJ et al.: The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med 326: 242–250 (1992).PubMedCrossRefGoogle Scholar
  26. [26]
    Galis ZS, Sukhova GK, Lark MW et al.: Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94: 2493–2503 (1994).PubMedGoogle Scholar
  27. [27]
    Glagov S, Weisenberg E, Zarins CK et al.: Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316: 1371–1375 (1987).PubMedCrossRefGoogle Scholar
  28. [28]
    Grubb RL Jr, Raichle ME, Phelps ME et al.: Effects of increased intracranial pressure on cerebral blood volume, blood flow, and oxygen utilization in monkey. J Neurosurg 43: 385–398 (1975).PubMedCrossRefGoogle Scholar
  29. [29]
    Gussenhoven EJ, Essed CE, Lancee CT et al.: Arterial wall characteristics determined by intravascular ultrasound imaging: an in vitro study. J Am Coll Cardiol 14: 947–952 (1989).PubMedCrossRefGoogle Scholar
  30. [30]
    Hardoff R, Braegelmann F, Zanzonico P et al.: External imaging of atherosclerosis in rabbits using an 123I-labeled synthetic peptide fragment. J Clin Pharmacol 33: 1039–1047 (1993).PubMedGoogle Scholar
  31. [31]
    Jaffer FA, Weissleder R: Molecular imaging in the clinical arena. JAMA 293: 855–862 (2005).PubMedCrossRefGoogle Scholar
  32. [32]
    Kamat BR, Galli SJ, Barger AC et al.: Neovascularization and coronary atherosclerotic plaque: cinematographic localization and quantitative histologic analysis. Hum Pathol 18: 1036–1042 (1987).PubMedCrossRefGoogle Scholar
  33. [33]
    Kety SS, King BD, Horvath SM et al.: The effects of an acute reduction in blood pressure by means of differential spinal sympathetic block on the cerebral circulation of hypertensive patients. J Clin Invest 29: 402–407 (1950).PubMedGoogle Scholar
  34. [34]
    Khoo JC, Miller E, Pio F et al.: Monoclonal antibodies against LDL further enhance macrophage uptake of LDL aggregates. Arterioscler Thromb 12: 1258–1266 (1992).PubMedGoogle Scholar
  35. [35]
    Khoo JC, Miller E, McLoughlin P et al.: Enhanced macrophage uptake of low density lipoprotein after self-aggregation. Arteriosclerosis 8: 348–358 (1988)PubMedGoogle Scholar
  36. [36]
    Kietselaer BL, Reutelingsperger CP, Heidendal GA et al.: Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis, N Engl J Med 350: 1472–1473 (2004).PubMedCrossRefGoogle Scholar
  37. [37]
    Kolodgie FD, Petrov A, Virmani R et al.: Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V A technique with potential for noninvasive imaging of vulnerable plaque. Circulation 108: 3134–3139 (2003).PubMedCrossRefGoogle Scholar
  38. [38]
    Kolodgie FD, Narula J, Burke AP et al.: Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am J Pathol 157: 1259–1268 (2000).PubMedGoogle Scholar
  39. [39]
    Lees RS, Lees AM, Strauss HW: External imaging of human atherosclerosis. J Nucl Med 24: 154–156 (1983).PubMedGoogle Scholar
  40. [40]
    McHenry LC Jr, Fazekas JF, Sullivan JF: Cerebral hemodynamics of syncope. Am J Med Sci 80: 173–178 (1961).Google Scholar
  41. [41]
    Mendelowitsch A, Taussky P, Rem JA et al.: Clinical outcome of standard extracranial-intracranial bypass surgery in patients with symptomatic atherosclerotic occlusion of the internal carotid artery. Acta Neurochir (Wien). 146: 95–101 (2004).CrossRefGoogle Scholar
  42. [42]
    Mizuno K, Miyamoto A, Satomura K et al.: Angioscopic coronary macromorphology in patients with acute coronary disorders. Lancet 337: 809–812 (1991)PubMedCrossRefGoogle Scholar
  43. [43]
    Myerburg RJ, Interian Jr A, Mitrani RM, et al, Frequency of sudden cardiac death and profiles of risk. Am J Cardiol 80: 10F–19F (1997).PubMedCrossRefGoogle Scholar
  44. [44]
    Naghavi M, Madjid M, Gul K et al.: Thermography basket catheter In vivo measurement of the temperature of atherosclerotic plaques for detection of vulnerable plaques. Catheter Cardiovasc Interv 59: 52–59 (2003).PubMedCrossRefGoogle Scholar
  45. [45]
    Naghavi M, Libby P, Falk E et al.: From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 108: 1664–1672 (2003).PubMedCrossRefGoogle Scholar
  46. [46]
    Narula J, Virmani R et al.: Radionuclide imaging of atherosclerotic lesions. In: Dilsizian V, Narula J, Braunwald E, eds. Atlas of nuclear cardiology. Philadelphia: Current Medicine 2003.Google Scholar
  47. [47]
    Narula J, Virmani R, Iskandrian AE: Strategic targeting of atherosclerotic lesions. J Nucl Cardiol 6(1 Pt 1): 81–90 (1999).PubMedCrossRefGoogle Scholar
  48. [48]
    Narula J, Petrov A, Bianchi C et al.: Noninvasive localization of experimental atherosclerotic lesions with mouse/human chimeric Z2D3 F(ab’)2 specific for the proliferating smooth muscle cells of human atheroma Imaging with conventional and negative charge-modified antibody fragments. Circulation 92: 474–484 (1995).PubMedGoogle Scholar
  49. [49]
    Nelken NA, Coughlin SR, Gordon D et al.: Monocyte chemoattractant protein-1 in human atheromatous plaques. J Clin Invest 88: 1121–1127 (1991).PubMedCrossRefGoogle Scholar
  50. [50]
    Nighoghossian N, Derex L, Douek P.: The vulnerable carotid artery plaque: current imaging methods and new perspectives. Stroke 36: 2764–2772 (2005).PubMedCrossRefGoogle Scholar
  51. [51]
    North American Symptomatic Carotid Endarterectomy Trial Collaborators: Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med 325: 445–453 (1991).CrossRefGoogle Scholar
  52. [52]
    O’Brien KD, Allen MD, McDonald TO et al.: Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis. J Clin Invest 92: 945–951 (1993).PubMedGoogle Scholar
  53. [53]
    Ohtsuki K, Hayase M, Akashi K et al.: Detection of monocyte chemoattractant protein-1 receptor expression in experimental atherosclerotic lesions An autoradiographic study. Circulation 104: 203–208 (2001).PubMedGoogle Scholar
  54. [54]
    Osterud B, Bjorklid E: Role of monocytes in atherogenesis. Physiol Rev 83: 1069–1112 (2003).PubMedGoogle Scholar
  55. [55]
    Pearson TA, Mensah GA, Alexander RW et al.: Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107: 499–511 (2003)PubMedCrossRefGoogle Scholar
  56. [56]
    Peebles CR: Non-invasive coronary imaging: computed tomography or magnetic resonance imaging? Heart 89: 591–594 (2003).PubMedCrossRefGoogle Scholar
  57. [57]
    Potkin BN, Bartorelli AL, Gessert JM et al.: Coronary artery imaging with intravascular high-frequency ultrasound. Circulation 81: 1575–1585 (1990).PubMedGoogle Scholar
  58. [58]
    Powers WJ, Derdeyn CP, Fritsch SM et al.: Benign prognosis of never-symptomatic carotid occlusion. Neurology 54: 878–882 (2000).PubMedGoogle Scholar
  59. [59]
    Rubin RH, Fischman AJ: The use of radiolabeled nonspecific immunoglobulin in the detection of focal inflammation. Semin Nucl Med 24: 169–179 (1994).PubMedCrossRefGoogle Scholar
  60. [60]
    Rudd JH, Warburton EA, Fryer TD et al.: Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 105: 2708–2711 (2002).PubMedCrossRefGoogle Scholar
  61. [61]
    Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF: Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103: 415–422 (2001).PubMedGoogle Scholar
  62. [62]
    Sadeghi MM, S Krassilnikova S, Zhang J et al.: Detection of injury-induced vascular remodeling by targeting activated alphavbeta3 integrin in vivo. Circulation 110: 84–90 (2004).PubMedCrossRefGoogle Scholar
  63. [63]
    Schafers M, Riemann B, Kopka K et al.: Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation 109: 2554–2559 (2004).PubMedCrossRefGoogle Scholar
  64. [64]
    Schaller B: Ischemic preconditioning as induction of ischemic tolerance after transient ischemic attacks in human brain: its clinical relevance. Neurosci Lett 377: 206–11 (2005).PubMedCrossRefGoogle Scholar
  65. [65]
    Schumann P, Touzani O, Young AR et al.: Evaluation of the ratio of cerebral blood flow to cerebral blood volume as an index of local cerebral perfusion pressure. Brain 121: 1369–1379 (1998).PubMedCrossRefGoogle Scholar
  66. [66]
    Silvestrini M, Vernieri F, Pasqualetti P et al.: Impaired cerebral vasoreactivity and risk of stroke in patients with asymptomatic carotid artery stenosis. JAMA 283: 2122–2127 (2000).PubMedCrossRefGoogle Scholar
  67. [67]
    Skinner MP, Yuan C, Mitsumori L, Hayes CE, Raines EW, Nelson JA, Ross R: Serial magnetic resonance imaging of experimental atherosclerosis detects lesion fine structure, progression and complications in vivo. Nat Med 1: 69–73 (1995).PubMedCrossRefGoogle Scholar
  68. [68]
    Stary HC, Chandler AB, Dinsmore RE et al.: A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 92: 1355–1374 (1995).PubMedGoogle Scholar
  69. [69]
    Stary HC, Chandler AB, Glagov S et al.: A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb 14: 840–856 (1994).PubMedGoogle Scholar
  70. [70]
    Steinberg D, Witzum JL: Lipoproteins, lipoprotein oxidation, and atherogenesis. In: Cheien KR, ed. Molecular basis of cardiovascular disease. Philadelphia: Saunders; 458–476 (1998).Google Scholar
  71. [71]
    Steinberg D, Lewis A: Conner Memorial Lecture. Oxidative modification of LDL and atherogenesis. Circulation 95: 1062–1071 (1997).PubMedGoogle Scholar
  72. [72]
    Stefanadis C, Diamantopoulos L, Vlachopoulos C et al.: Thermal heterogeneity within human atherosclerotic coronary arteries detected in vivo: a new method of detection by application of a special thermography catheter. Circulation 99: 1965–1971 (1999).PubMedGoogle Scholar
  73. [73]
    Tatsumi M, Cohade C, Nakamoto Y et al.: Fluorodeoxyglucose uptake in the aortic wall at PET/CT Possible finding for active atherosclerosis. Radiology 229: 831–837 (2003).PubMedGoogle Scholar
  74. [74]
    Tawakol A, Migrino RQ, Hoffmann U et al.: Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. J Nucl Cardiol. 12: 294–301 (2005).PubMedCrossRefGoogle Scholar
  75. [75]
    Thieme T, Wernecke KD, Meyer R et al.: Angioscopic evaluation of atherosclerotic plaques: validation by histomorphologic analysis and association with stable and unstable coronary syndromes. J Am Coll Cardiol 28: 1–6 (1996).PubMedCrossRefGoogle Scholar
  76. [76]
    Tomita M: Significance of cerebral blood volume. In: Tomita M, Sawada T, Naritomi H, Heiss W-D, eds. Cerebral Hyperemia and Ischemia: From the Standpoint of Cerebral Blood Volume. Amsterdam: Elsevier Science Publishers BV 1988.Google Scholar
  77. [77]
    Tsimikas S, Palinski W, Halpern SE et al.: Radiolabeled MDA2, an oxidation-specific, monoclonal antibody, identifies native atherosclerotic lesions in vivo. J Nucl Cardiol 6: 41–53 (1999).PubMedCrossRefGoogle Scholar
  78. [78]
    van der Wal AC, Becker AE, van der Loos CM et al.: Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89: 36–44 (1994).PubMedGoogle Scholar
  79. [79]
    Virmani R, Kolodgie FD, Burke AP et al.: Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20: 1262–1275 (2000).PubMedGoogle Scholar
  80. [80]
    Weissleder R, Mahmood U: Molecular imaging. Radiology 40: 219–316 (2001).Google Scholar
  81. [81]
    Wentzel JJ, Aguiar SH, Fayad ZA: Vascular MRI in the diagnosis and therapy of the high risk atherosclerotic plaque. J Interv Cardiol 16: 129–142 (2003).PubMedGoogle Scholar
  82. [82]
    Witztum JL: The oxidation hypothesis of atherosclerosis. Lancet 344: 793–795 (1994).PubMedCrossRefGoogle Scholar
  83. [83]
    Yabushita H, Bouma BE, Houser SL et al.: Characterization of human atherosclerosis by optical coherence tomography. Circulation 106: 1640–1645 (2002).PubMedCrossRefGoogle Scholar
  84. [84]
    Zaharchuk G, Mandeville JB, Bogdanov AA Jr et al.: Cerebrovascular dynamics of autoregulation and hypoperfusion: an MRI study of CBF and changes in total and microvascular cerebral blood volume during hemorrhagic hypotension. Stroke 30: 2197–2205 (1999).PubMedGoogle Scholar
  85. [85]
    Zamir M, Silver MD: Vasculature in the walls of human coronary arteries. Arch Pathol Lab Med 109: 659–662 (1985).PubMedGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2007

Authors and Affiliations

  • B. J. Schaller
    • 1
  • M. Buchfelder
    • 1
  1. 1.Department of NeurosurgeryUniversity HospitalGöttingenGermany

Personalised recommendations