Imaging of Extracranial to Intracranial Bypass

  • H. J. N. Streefkerk
  • C. A. F. Tulleken
  • J. Hendrikse
  • C. J. M. Klijn


Extracranial to intracranial (EC-IC) bypass surgery can be applied to achieve revascularization of the brain in patients in whom the normal pathway of blood flow to the brain is obstructed. Patients who may benefit from revascularization can be divided into two main groups. The first group consists of patients with a giant aneurysm of one of the cerebral arteries, which can not be clipped or coiled and for whom temporary or permanent occlusion of the artery is the only treatment option. The second group comprises patients with recurrent transient ischaemic attacks (TIAs) and stroke associated with occlusion of the internal carotid artery (ICA) at high risk of recurrent ischaemic stroke. The treatment with EC-IC bypass is based on the notion that in some patients with ICA occlusion ischaemic stroke is caused by failure of blood flow towards the brain rather than by embolism [36]. In such “haemodynamically compromised” patients augmentation of blood flow towards the symptomatic hemisphere by means of an EC-IC bypass might theoretically be beneficial.


Carotid Artery Occlusion Internal Carotid Artery Occlusion Recurrent Ischaemic Stroke Contralateral Internal Carotid Artery Arterial Spin Labelling Magnetic Resonance Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    The EC/IC Bypass Study Group: Failure of extracranial-intracranial arterial bypass to reduce the risk of ischemic stroke. Results of an international randomized trial. N Engl J Med 313: 1191–1200 (1985).CrossRefGoogle Scholar
  2. [2]
    Anderson DE, McLane MP, Reichman OH, Origitano TC: Improved cerebral blood flow and CO2 reactivity after microvascular anastomosis in patients at high risk for recurrent stroke. Neurosurgery 31: 26–33 (1992).PubMedCrossRefGoogle Scholar
  3. [3]
    Badie B, Lee FT Jr., Pozniak MA, Strother CM: Intraoperative sonographic assessment of graft patency during extracranial-intracranial bypass. AJNR Am J Neuroradiol 21: 1457–1459 (2000).PubMedGoogle Scholar
  4. [4]
    Bandyk DF, Towne JB, Schmitt DD, Seabrook GR, Bergamini TM: Therapeutic options for acute thrombosed in situ saphenous vein arterial bypass grafts. J Vasc Surg 11: 680–687 (1990).PubMedCrossRefGoogle Scholar
  5. [5]
    Bergamini TM, Towne JB, Bandyk DF, Seabrook GR, Schmitt DD: Experience with in situ saphenous vein bypasses during 1981 to 1989: determinant factors of long-term patency. J Vasc Surg 13: 137–147 (1991).PubMedCrossRefGoogle Scholar
  6. [6]
    Berry PR: Cerebral occlusion: Extracranial-intracranial anastomosis. AORN J 41: 901–905, 907 (1985).PubMedGoogle Scholar
  7. [7]
    Bishop CC, Burnand KG, Brown M, Russell RR, Browse NL: Reduced response of cerebral blood flow to hypercapnia: restoration by extracranial-intracranial bypass. Br J Surg 74: 802–804 (1987).PubMedCrossRefGoogle Scholar
  8. [8]
    Caplan LR, Piepgras DG, Quest DO, Toole JF, Samson D, Futrell N, Millikan C, Flamm ES, Heros RC, Yonekawa Y, Eguchi T, Yonas H, Rothbart D, Spetzler RF: EC-IC bypass 10 years later: is it valuable? Surg Neurol 46: 416–423 (1996).PubMedCrossRefGoogle Scholar
  9. [9]
    Charbel FT, Misra M, Clarke ME, Ausman JI: Computer simulation of cerebral blood flow in moyamoya and the results of surgical therapies. Clin Neurol Neurosurg 99Suppl 2: S68–S73 (1997).PubMedCrossRefGoogle Scholar
  10. [10]
    de Weerd AW, Veering MM, Mosmans PC, van Huffelen AC, Tulleken CA, Jonkman EJ: Effect of the extra-intracranial (STA-MCA) arterial anastomosis on EEG and cerebral blood flow: a controlled study of patients with unilateral cerebral ischemia. Stroke 13:674–679 (1982).PubMedGoogle Scholar
  11. [11]
    Derdeyn CP, Grubb RL Jr., Powers WJ: Cerebral hemodynamic impairment: methods of measurement and association with stroke risk. Neurology 53: 251–259 (1999).PubMedGoogle Scholar
  12. [12]
    Derdeyn CP, Videen TO, Fritsch SM, Carpenter DA, Grubb RL Jr., Powers WJ: Compensatory mechanisms for chronic cerebral hypoperfusion in patients with carotid occlusion. Stroke 30: 1019–1024 (1999).PubMedGoogle Scholar
  13. [13]
    Derdeyn CP, Videen TO, Yundt KD, Fritsch SM, Carpenter DA, Grubb RL, Powers WJ: Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain 125: 595–607 (2002).PubMedCrossRefGoogle Scholar
  14. [14]
    Di P, V, Lenzi GL, Collice M, Triulzi F, Gerundini P, Perani D, Savi AR, Fieschi C, Fazio F: Long-term noninvasive single photon emission computed tomography monitoring of perfusional changes after EC-IC bypass surgery. J Neurol Neurosurg Psychiatry 50: 988–996 (1987).Google Scholar
  15. [15]
    Gibbs JM, Wise RJ, Thomas DJ, Mansfield AO, Russell RW: Cerebral haemodynamic changes after extracranial-intracranial bypass surgery. J Neurol Neurosurg Psychiatry 50: 140–150 (1987).PubMedGoogle Scholar
  16. [16]
    Grubb RL Jr., Derdeyn CP, Fritsch SM, Carpenter DA, Yundt KD, Videen TO, Spitznagel EL, Powers WJ: Importance of hemodynamic factors in the prognosis of symptomatic carotid occlusion. JAMA 280: 1055–1060 (1998).PubMedCrossRefGoogle Scholar
  17. [17]
    Grubb RL Jr., Powers WJ, Derdeyn CP, Adams HP Jr., Clarke WR: The Carotid Occlusion Surgery Study. Neurosurg Focus 14: e9 (2003).PubMedGoogle Scholar
  18. [18]
    Grubb RL Jr., Ratcheson RA, Raichle ME, Kliefoth AB, Gado MH: Regional cerebral blood flow and oxygen utilization in superficial temporal-middle cerebral artery anastomosis patients: an exploratory definition of clinical problems. J Neurosurg 50: 733–741 (1979).PubMedGoogle Scholar
  19. [19]
    Gundry SR, Jones M, Ishihara T, Ferrans VJ: Optimal preparation techniques for human saphenous vein grafts. Surgery 88: 785–794 (1980).PubMedGoogle Scholar
  20. [20]
    Halsey JH Jr., Morawetz RB, Blauenstein UW: The hemodynamic effect of STA-MCA bypass. Stroke 13: 163–167 (1982).PubMedGoogle Scholar
  21. [21]
    Halsey JH Jr., Nakai K, Wariyar B: Sensitivity of rCBF to focal lesions. Stroke 12: 631–635 (1981).PubMedGoogle Scholar
  22. [22]
    Hartmann A, Rommel T, Winter R, Tsuda Y, Menzel J: Measurements of regional cerebral blood flow in patients following superficial temporal artery-middle cerebral artery anastomosis. Acta Neurochir (Wien) 89: 106–111 (1987).CrossRefGoogle Scholar
  23. [23]
    Heilbrun MP, Reichman OH, Anderson RE, Roberts TS: Regional cerebral blood flow studies following superficial temporal-middle cerebral artery anastomosis. J Neurosurg 43: 706–716 (1975).PubMedGoogle Scholar
  24. [24]
    Hendrikse J, van der Z A, Ramos LM, van Osch MJ, Golay X, Tulleken CA, van der G J: Altered flow territories after extracranial-intracranial bypass surgery. Neurosurgery 57: 486–494 (2005).PubMedCrossRefGoogle Scholar
  25. [25]
    Hirai Y, Fujimoto S, Toyoda K, Inoue T, Uwatoko T, Makihara N, Yasumori K, Ibayashi S, Iida M, Okada Y: Superficial temporal artery duplex ultrasonography for improved cerebral hemodynamics after extracranial-intracranial bypass surgery. Cerebrovasc Dis 20: 463–469 (2005).PubMedCrossRefGoogle Scholar
  26. [26]
    Holzschuh M, Brawanski A, Ullrich W, Meixensberger J: Cerebral blood flow and cerebrovascular reserve 5 years after EC-IC bypass. Neurosurg Rev 14: 275–278 (1991).PubMedCrossRefGoogle Scholar
  27. [27]
    Horn P, Vajkoczy P, Schmiedek P, Neff W: Evaluation of extracranial-intracranial arterial bypass function with magnetic resonance angiography. Neuroradiology 46: 723–729 (2004).PubMedCrossRefGoogle Scholar
  28. [28]
    Ishikawa T, Houkin K, Abe H, Isobe M, Kamiyama H: Cerebral haemodynamics and long-term prognosis after extracranial-intracranial bypass surgery. J Neurol Neurosurg Psychiatry 59: 625–628 (1995).PubMedGoogle Scholar
  29. [29]
    Iwama T, Hashimoto N, Takagi Y, Tsukahara T, Hayashida K: Predictability of extracranial/intracranial bypass function: a retrospective study of patients with occlusive cerebrovascular disease. Neurosurgery 40: 53–59 (1997).PubMedCrossRefGoogle Scholar
  30. [30]
    Karnik R, Valentin A, Ammerer HP, Donath P, Slany J: Evaluation of vasomotor reactivity by transcranial Doppler and acetazolamide test before and after extracranial-intracranial bypass in patients with internal carotid artery occlusion. Stroke 23: 812–817 (1992).PubMedGoogle Scholar
  31. [31]
    Kawaguchi S, Sakaki T, Uranishi R: Effects of bypass on CO2 cerebrovascular reactivity in ischaemic cerebrovascular diseases-based on the intra-operative LCBF and CO2 cerebrovascular reactivity studies. Acta Neurochir (Wien) 141: 369–374 (1999).CrossRefGoogle Scholar
  32. [32]
    Kawamura S, Sayama I, Yasui N, Uemura K: Haemodynamic and metabolic changes following extra-intracranial bypass surgery. Acta Neurochir (Wien) 126: 135–139 (1994).CrossRefGoogle Scholar
  33. [33]
    Kleiser B, Widder B: Course of carotid artery occlusions with impaired cerebrovascular reactivity. Stroke 23: 171–174 (1992).PubMedGoogle Scholar
  34. [34]
    Kletter G: The Extra-Intracranial Bypass Operation for Prevention and Treatment of Stroke. New York-Wien, Springer Verlag (1979).Google Scholar
  35. [35]
    Klijn CJ, Kappelle LJ, Algra A, van Gijn J: Outcome in patients with symptomatic occlusion of the internal carotid artery or intracranial arterial lesions: a meta-analysis of the role of baseline characteristics and type of antithrombotic treatment. Cerebrovasc Dis 12: 228–234 (2001).PubMedCrossRefGoogle Scholar
  36. [36]
    Klijn CJ, Kappelle LJ, Tulleken CA, van Gijn J: Symptomatic carotid artery occlusion. A reappraisal of hemodynamic factors. Stroke 28: 2084–2093 (1997).PubMedGoogle Scholar
  37. [37]
    Klijn CJ, Kappelle LJ, van der Grond J, Algra A, Tulleken CA, van Gijn J: Magnetic resonance techniques for the identification of patients with symptomatic carotid artery occlusion at high risk of cerebral ischemic events. Stroke 31: 3001–3007 (2000).PubMedGoogle Scholar
  38. [38]
    Klijn CJ, Kappelle LJ, van der Grond J, van Gijn J, Tulleken CA: A new type of extracranial/intracranial bypass for recurrent haemodynamic transient ischaemic attacks. Cerebrovasc Dis 8: 184–187 (1998).PubMedCrossRefGoogle Scholar
  39. [39]
    Klijn CJ, Kappelle LJ, van der Zwan A, van Gijn J, Tulleken CA: Excimer laser-assisted high-flow extracranial/ intracranial bypass in patients with symptomatic carotid artery occlusion at high risk of recurrent cerebral ischemia: safety and long-term outcome. Stroke 33: 2451–2458 (2002).PubMedCrossRefGoogle Scholar
  40. [40]
    Klijn CJ, van Buren PA, Kappelle LJ, Tulleken CA, Eikelboom BC, Algra A, van Gijn J: Outcome in patients with symptomatic occlusion of the internal carotid artery. Eur J Vasc Endovasc Surg 19: 579–586 (2000).PubMedCrossRefGoogle Scholar
  41. [41]
    Kobayashi H, Kitai R, Ido K, Kabuto M, Handa Y, Kubota T, Yonekura Y: Hemodynamic and metabolic changes following cerebral revascularization in patients with cerebral occlusive diseases. Neurol Res 21: 153–160 (1999).PubMedGoogle Scholar
  42. [42]
    Kodama T, Ueda T, Suzuki Y, Yano T, Watanabe K: MRA in the evaluation of EC-IC bypass patency. J Comput Assist Tomogr 17: 922–926 (1993).PubMedCrossRefGoogle Scholar
  43. [43]
    Kodoma T, Suzuki Y, Yano T, Watanabe K, Ueda T, Asada K: Phase-contrast MRA in the evaluation of ECIC bypass patency. Clin Radiol 50: 459–465 (1995).PubMedCrossRefGoogle Scholar
  44. [44]
    Kume N, Hayashida K, Iwama T, Cho I, Matsunaga N: Use of 123I-IMP brain SPET to predict outcome following STA-MCA bypass surgery: cerebral blood flow but not vasoreactivity is a predictive parameter. Eur J Nucl Med 25: 1637–1642 (1998).PubMedCrossRefGoogle Scholar
  45. [45]
    Kuwabara Y, Ichiya Y, Sasaki M, Yoshida T, Fukumura T, Masuda K, Fujii K, Fukui M: PET evaluation of cerebral hemodynamics in occlusive cerebrovascular disease pre-and postsurgery. J Nucl Med 39: 760–765 (1998).PubMedGoogle Scholar
  46. [46]
    Langer DJ, Vajkoczy P: ELANA: Excimer Laser-Assisted Nonocclusive Anastomosis for extracranial-to-intracranial and intracranial-to-intracranial bypass: a review. Skull Base 15: 191–205 (2005).PubMedCrossRefGoogle Scholar
  47. [47]
    Laurent JP, Lawner PM, O’Connor M: Reversal of intracerebral steal by STA-MCA anastomosis. J Neurosurg 57: 629–632 (1982).PubMedGoogle Scholar
  48. [48]
    Leblanc R, Tyler JL, Mohr G, Meyer E, Diksic M, Yamamoto L, Taylor L, Gauthier S, Hakim A: Hemodynamic and metabolic effects of cerebral revascularization. J Neurosurg 66: 529–535 (1987).PubMedGoogle Scholar
  49. [49]
    Meyer JS, Nakajima S, Okabe T, Amano T, Centeno R, Len YY, Levine J, Levinthal R, Rose J: Redistribution of cerebral blood flow following STA-MCA by-pass in patients with hemispheric ischemia. Stroke 13: 774–784 (1982).PubMedGoogle Scholar
  50. [50]
    Mizumura S, Nakagawara J, Takahashi M, Kumita S, Cho K, Nakajo H, Toba M, Kumazaki T: Three-dimensional display in staging hemodynamic brain ischemia for JET study: objective evaluation using SEE analysis and 3D-SSP display. Ann Nucl Med 18: 13–21 (2004).PubMedGoogle Scholar
  51. [51]
    Moritake K, Handa H, Yonekawa Y, Nagata I: Ultrasonic Doppler assessment of hemodynamics in superficial temporal artery-middle cerebral artery anastomosis. Surg Neurol 13: 249–257 (1980).PubMedGoogle Scholar
  52. [52]
    Muraishi K, Kameyama M, Sato K, Sirane R, Ogawa A, Yoshimoto T, Hatazawa J, Itoh M: Cerebral circulatory and metabolic changes following EC/IC bypass surgery in cerebral occlusive diseases. Neurol Res 15: 97–103 (1993).PubMedGoogle Scholar
  53. [53]
    Nagata S, Fujii K, Matsushima T, Fukui M, Sadoshima S, Kuwabara Y, Abe H: Evaluation of EC-IC bypass for patients with atherosclerotic occlusive cerebrovascular disease: clinical and positron emission tomographic studies. Neurol Res 13: 209–216 (1991).PubMedGoogle Scholar
  54. [54]
    Nakayama N, Kuroda S, Houkin K, Takikawa S, Abe H: Intraoperative measurement of arterial blood flow using a transit time flowmeter: monitoring of hemodynamic changes during cerebrovascular surgery. Acta Neurochir (Wien) 143: 17–24 (2001).CrossRefGoogle Scholar
  55. [55]
    Neff KW, Horn P, Dinter D, Vajkoczy P, Schmiedek P, Duber C: Extracranial-intracranial arterial bypass surgery improves total brain blood supply in selected symptomatic patients with unilateral internal carotid artery occlusion and insufficient collateralization. Neuroradiology 46: 730–737 (2004).PubMedCrossRefGoogle Scholar
  56. [56]
    Okada Y, Shima T, Nishida M, Yamane K: Retroauricular subcutaneous Dacron tunnel for extracranial-intracranial autologous vein bypass graft. Technical note. J Neurosurg 81: 800–802 (1994).PubMedGoogle Scholar
  57. [57]
    Piepgras A, Leinsinger G, Kirsch CM, Schmiedek P: STA-MCA bypass in bilateral carotid artery occlusion: clinical results and long-term effect on cerebrovascular reserve capacity. Neurol Res 16: 104–107 (1994).PubMedGoogle Scholar
  58. [58]
    Powers WJ, Martin WR, Herscovitch P, Raichle ME, Grubb RL Jr: Extracranial-intracranial bypass surgery: hemodynamic and metabolic effects. Neurology 34: 1168–1174 (1984).PubMedGoogle Scholar
  59. [59]
    Regli L, Piepgras DG, Hansen KK: Late patency of long saphenous vein bypass grafts to the anterior and posterior cerebral circulation. J Neurosurg 83: 806–811 (1995).PubMedGoogle Scholar
  60. [60]
    Samson Y, Baron JC, Bousser MG, Rey A, Derlon JM, David P, Comoy J: Effects of extra-intracranial arterial bypass on cerebral blood flow and oxygen metabolism in humans. Stroke 16: 609–616 (1985).PubMedGoogle Scholar
  61. [61]
    Sasoh M, Ogasawara K, Kuroda K, Okuguchi T, Terasaki K, Yamadate K, Ogawa A: Effects of EC-IC bypass surgery on cognitive impairment in patients with hemodynamic cerebral ischemia. Surg Neurol 59: 455–460 (2003).PubMedCrossRefGoogle Scholar
  62. [62]
    Schick U, Zimmermann M, Stolke D: Long-term evaluation of EC-IC bypass patency. Acta Neurochir (Wien) 138: 938–942 (1996).CrossRefGoogle Scholar
  63. [63]
    Schmiedek P, Gratzl O, Spetzler R, Steinhoff H, Enzenbach R, Brendel W, Marguth F: Selection of patients for extra-intracranial arterial bypass surgery based on rCBF measurements. J Neurosurg 44: 303–312 (1976).PubMedGoogle Scholar
  64. [64]
    Schmiedek P, Gratzl O, Steinhoff H: Regional blood flow measurement in extra-intracranial anastomoses for cerebral ischemia. Methodologic aspects. Acta Radiol Suppl 347: 247–251 (1976).PubMedGoogle Scholar
  65. [65]
    Schmiedek P, Piepgras A, Leinsinger G, Kirsch CM, Einhupl K: Improvement of cerebrovascular reserve capacity by EC-IC arterial bypass surgery in patients with ICA occlusion and hemodynamic cerebral ischemia. J Neurosurg 81: 236–244 (1994).PubMedGoogle Scholar
  66. [66]
    Sekhar LN, Bucur SD, Bank WO, Wright DC: Venous and arterial bypass grafts for difficult tumors, aneurysms, and occlusive vascular lesions: evolution of surgical treatment and improved graft results. Neurosurgery 44: 1207–1223 (1999).PubMedCrossRefGoogle Scholar
  67. [67]
    Spetzler R, Chater N: Microvascular bypass surgery. Part 2: physiological studies. J Neurosurg 45: 508–513 (1976).PubMedGoogle Scholar
  68. [68]
    Streefkerk HJ, Bremmer JP, Tulleken CA: The ELANA technique: high flow revascularization of the brain. Acta Neurochir Suppl 94: 143–148 (2005).PubMedGoogle Scholar
  69. [69]
    Streefkerk HJ, Wolfs JF, Sorteberg W, Sorteberg AG, Tulleken CA: The ELANA technique: constructing a high flow bypass using a non-occlusive anastomosis on the ICA and a conventional anastomosis on the SCA in the treatment of a fusiform giant basilar trunk aneurysm. Acta Neurochir (Wien) 146: 1009–1019 (2004).CrossRefGoogle Scholar
  70. [70]
    Sunada I: [Measurement of cerebral blood flow by single photon emission computed tomography in cases of internal carotid artery occlusion]. Neurol Med Chir (Tokyo) 29: 496–502 (1989).Google Scholar
  71. [71]
    Sundt TM Jr., Piepgras DG, Marsh WR, Fode NC: Saphenous vein bypass grafts for giant aneurysms and intracranial occlusive disease. J Neurosurg 65: 439–450 (1986).PubMedGoogle Scholar
  72. [72]
    Sundt TM, III, Sundt TM Jr: Principles of preparation of vein bypass grafts to maximize patency. J Neurosurg 66: 172–180 (1987).PubMedGoogle Scholar
  73. [73]
    Takagi Y, Hashimoto N, Iwama T, Hayashida K: Improvement of oxygen metabolic reserve after extracranial-intracranial bypass surgery in patients with severe haemodynamic insufficiency. Acta Neurochir (Wien) 139: 52–56 (1997).CrossRefGoogle Scholar
  74. [74]
    Tanahashi N, Meyer JS, Rogers RL, Kitagawa Y, Mortel KF, Kandula P, Levinthal R, Rose J: Long-term assessment of cerebral perfusion following STA-MCA by-pass in patients. Stroke 16: 85–91 (1985).PubMedGoogle Scholar
  75. [75]
    Teksam M, McKinney A, Truwit CL: Multi-slice CT angiography in evaluation of extracranial-intracranial bypass. Eur J Radiol 52: 217–220 (2004).PubMedCrossRefGoogle Scholar
  76. [76]
    Thomas M, Hennerici M, Marshall J: Cerebral blood flow after carotid occlusion and extracranial-intracranial bypass. J Neurol Neurosurg Psychiatry 47: 148–152 (1984).PubMedGoogle Scholar
  77. [77]
    Touho H, Karasawa J, Shishido H, Morisako T, Yamada K, Shibamoto K: Hemodynamic evaluation in patients with superficial temporal artery-middle cerebral artery anastomosis — stable xenon CT-CBF study and acetazolamide. Neurol Med Chir (Tokyo) 30: 1003–1010 (1990).Google Scholar
  78. [78]
    Touho H, Karasawa J, Shishido H, Yamada K, Shibamoto K: Hemodynamic evaluation before and after the STA-MCA anastomosis — with special reference to measurement of regional transit time with intra-arterial digital subtraction angiography. Neurol Med Chir (Tokyo) 30: 663–669 (1990).CrossRefGoogle Scholar
  79. [79]
    Tsuchiya K, Aoki C, Katase S, Hachiya J, Shiokawa Y: Visualization of extracranial-intracranial bypass using multidetector-row helical computed tomography angiography. J Comput Assist Tomogr 27: 231–234 (2003).PubMedCrossRefGoogle Scholar
  80. [80]
    Tsuda Y, Kimura K, Iwata Y, Hayakawa T, Etani H, Fukunaga R, Yoneda S, Abe H: Improvement of cerebral blood flow and/or CO2 reactivity after superficial temporal artery-middle cerebral artery bypass in patients with transient ischemic attacks and watershed-zone infarctions. Surg Neurol 22: 595–604 (1984).PubMedCrossRefGoogle Scholar
  81. [81]
    Tulleken CA, Verdaasdonk RM, Beck RJ, Mali WP: The modified excimer laser-assisted high-flow bypass operation. Surg Neurol 46: 424–429 (1996).PubMedCrossRefGoogle Scholar
  82. [82]
    van der Z A, Tulleken CA, Hillen B: Flow quantification of the non-occlusive excimer laser-assisted EC-IC bypass. Acta Neurochir (Wien) 143: 647–654 (2001).CrossRefGoogle Scholar
  83. [83]
    van Everdingen KJ, Klijn CJ, Kappelle LJ, Mali WP, van der G J: MRA flow quantification in patients with a symptomatic internal carotid artery occlusion. The Dutch EC-IC Bypass Study Group. Stroke 28: 1595–1600 (1997).PubMedGoogle Scholar
  84. [84]
    Vernieri F, Pasqualetti P, Matteis M, Passarelli F, Troisi E, Rossini PM, Caltagirone C, Silvestrini M: Effect of collateral blood flow and cerebral vasomotor reactivity on the outcome of carotid artery occlusion. Stroke 32: 1552–1558 (2001).PubMedGoogle Scholar
  85. [85]
    Vorstrup S, Brun B, Lassen NA: Evaluation of the cerebral vasodilatory capacity by the acetazolamide test before EC-IC bypass surgery in patients with occlusion of the internal carotid artery. Stroke 17:1291–1298 (1986).PubMedGoogle Scholar
  86. [86]
    Vorstrup S, Lassen NA, Henriksen L, Haase J, Lindewald H, Boysen G, Paulson OB: CBF before and after extracranial-intracranial bypass surgery in patients with ischemic cerebrovascular disease studied with 133Xe-inhalation tomography. Stroke 16: 616–626 (1985).PubMedGoogle Scholar
  87. [87]
    Webster MW, Makaroun MS, Steed DL, Smith HA, Johnson DW, Yonas H: Compromised cerebral blood flow reactivity is a predictor of stroke in patients with symptomatic carotid artery occlusive disease. J Vasc Surg 21: 338–344 (1995).PubMedCrossRefGoogle Scholar
  88. [88]
    Weinstein PR, Baena R, Chater NL: Results of extracranial-intracranial arterial bypass for intracranial internal carotid artery stenosis: review of 105 cases. Neurosurgery 15: 787–794 (1984).PubMedCrossRefGoogle Scholar
  89. [89]
    Widder B, Kleiser B, Krapf H: Course of cerebrovascular reactivity in patients with carotid artery occlusions. Stroke 25: 1963–1967 (1994).PubMedGoogle Scholar
  90. [90]
    Wintermark M, Sesay M, Barbier E, Borbely K, Dillon WP, Eastwood JD, Glenn TC, Grandin CB, Pedraza S, Soustiel JF, Nariai T, Zaharchuk G, Caille JM, Dousset V, Yonas H: Comparative overview of brain perfusion imaging techniques. Stroke 36: e83–e99 (2005).PubMedCrossRefGoogle Scholar
  91. [91]
    Woitzik J, Horn P, Vajkoczy P, Schmiedek P: Intraoperative control of extracranial-intracranial bypass patency by near-infrared indocyanine green videoangiography. J Neurosurg 102: 692–698 (2005).PubMedGoogle Scholar
  92. [92]
    Wood JH, Polyzoidis KS, Kee DB Jr., Prats AR, Gibby GL, Tindall GT: Augmentation of cerebral blood flow induced by hemodilution in stroke patients after superficial temporal-middle cerebral arterial bypass operation. Neurosurgery 15: 535–539 (1984).PubMedCrossRefGoogle Scholar
  93. [93]
    Yamashita T, Kashiwagi S, Nakano S, Takasago T, Abiko S, Shiroyama Y, Hayashi M, Ito H: The effect of EC-IC bypass surgery on resting cerebral blood flow and cerebrovascular reserve capacity studied with stable XE-CT and acetazolamide test. Neuroradiology 33: 217–222 (1991).PubMedCrossRefGoogle Scholar
  94. [94]
    Yamauchi H, Fukuyama H, Nagahama Y, Nabatame H, Ueno M, Nishizawa S, Konishi J, Shio H: Significance of increased oxygen extraction fraction in five-year prognosis of major cerebral arterial occlusive diseases. J Nucl Med 40: 1992–1998 (1999).PubMedGoogle Scholar
  95. [95]
    Yanaka K, Fujita K, Noguchi S, Matsumaru Y, Asakawa H, Anno I, Meguro K, Nose T: Intraoperative angiographic assessment of graft patency during extracranialintracranial bypass procedures. Neurol Med Chir (Tokyo) 43: 509–512 (2003).CrossRefGoogle Scholar
  96. [96]
    Yasargil MG: Microsurgery applied to Neurosurgery. New York, Academic Press (1969).Google Scholar
  97. [97]
    Yokota C, Hasegawa Y, Minematsu K, Yamaguchi T: Effect of acetazolamide reactivity on [corrected] longterm outcome in patients with major cerebral artery occlusive diseases. Stroke 29: 640–644 (1998).PubMedGoogle Scholar
  98. [98]
    Yonas H, Gur D, Good BC, Latchaw RE, Wolfson SK Jr., Good WF, Maitz GS, Colsher JG, Barnes JE, Colliander KG: Stable xenon CT blood flow mapping for evaluation of patients with extracranial-intracranial bypass surgery. J Neurosurg 62: 324–333 (1985).PubMedCrossRefGoogle Scholar
  99. [99]
    Yonekura M, Austin G, Hayward W: Long-term evaluation of cerebral blood flow, transient ischemic attacks, and stroke after STA-MCA anastomosis. Surg Neurol 18: 123–130 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2007

Authors and Affiliations

  • H. J. N. Streefkerk
    • 1
  • C. A. F. Tulleken
    • 1
  • J. Hendrikse
    • 1
  • C. J. M. Klijn
    • 1
  1. 1.University Departments of Neurology (CJMK), Neurosurgery (HJNS, CAFT), and Radiology (JH)University Medical Center Utrecht and the Rudolf Magnus Institute of NeuroscienceUtrechtThe Netherlands

Personalised recommendations