Skip to main content

Development of a cerebral microvascular dysplasia model in rodents

  • Conference paper
Cerebral Hemorrhage

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 105))

Abstract

Normal vasculature development of the central nervous system is extremely important because patients with vascular malformations are at life-threatening risk for intracranial hemorrhage or cerebral ischemia. The etiology and pathogenesis of abnormal vasculature development in the central nervous system are unknown, and progress is hampered by the lack of animal models for human cerebrovascular diseases. Here, we report our current study on cerebral microvascular dysplasia (CMVD) development. Using vascular endothelial growth factor hyper-stimulation, we demonstrated that aberrant microvessels could be developed in the rodent brain under certain conditions (such as genetic deficient background, local cytokine and chemokine release, or exogenous vessel dilating stimulation) that may speed up focal angiogenesis and lead to cerebral vascular dysplasia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bederson JB, Wiestler OD, Brüstle O, Roth P, Frick R, Yasargil MG (1991) Intracranial venous hypertension and the effects of venous outflow obstruction in a rat model of arteriovenous fistula. Neuro-surgery 29: 341–350

    CAS  Google Scholar 

  2. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438: 932–936

    Article  PubMed  CAS  Google Scholar 

  3. Chaloupka JC, Viñuela F, Robert J, Duckwiler GR (1994) An in vivo arteriovenous malformation model in swine: preliminary feasibility and natural history study. Am J Neuroradiol 15: 945–950

    PubMed  CAS  Google Scholar 

  4. Choudhri TF, Baker KZ, Winfree CJ, Hoh BL, Simon A, Solomon RA, Berman M, Connolly ES (1997) Intraoperative mild hypothermia is not associated with increased craniotomy wound infection rate or length of hospitalization. Surg Forum 48: 548–551

    Google Scholar 

  5. David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S (2007) Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 109: 1953–1961

    Article  PubMed  CAS  Google Scholar 

  6. De Mey JG, Schiffers PM, Hilgers RH, Sanders MM (2005) Toward functional genomics of flow-induced outward remodeling of resistance arteries. Am J Physiol Heart Circ Physiol 288: H1022–H1027

    Article  PubMed  CAS  Google Scholar 

  7. Fan Y, Yang GY (2007) Therapeutic angiogenesis for brain ischemia: a brief review. J Neuroimmune Pharmacol 2: 284–289

    Article  PubMed  Google Scholar 

  8. Gallione CJ, Richards JA, Letteboer TG, Rushlow D, Prigoda NL, Leedom TP, Ganguly A, Castells A, Ploos van Amstel JK, Westermann CJ, Pyeritz RE, Marchuk DA (2006) SMAD4 mutations found in unselected HHT patients. J Med Genet 43: 793–797

    Google Scholar 

  9. Gao E, Young WL, Ornstein E, Pile-Spellman J, Ma Q (1997) A theoretical model of cerebral hemodynamics: application to the study of arteriovenous malformations. J Cereb Blood Flow Metab 17: 905–918

    Article  PubMed  CAS  Google Scholar 

  10. Guttmacher AE, Marchuk DA, White RI Jr (1995) Hereditary hemorrhagic telangiectasia. N Engl J Med 333: 918–924

    Article  PubMed  CAS  Google Scholar 

  11. Hashimoto T, Young WL (2004) Roles of angiogenesis and vascular remodeling in brain vascular malformations. Semin Cerebrovasc Dis Stroke 4: 217–225

    Article  Google Scholar 

  12. Hashimoto T, Wu Y, Lawton MT, Yang GY, Barbaro NM, Young WL (2005) Co-expression of angiogenic factors in brain arteriovenous malformations. Neurosurgery 56: 1058–1065

    PubMed  Google Scholar 

  13. Herman JM, Spetzler RF, Bederson JB, Kurbat JM, Zabramski JM (1995) Genesis of a dural arteriovenous malformation in a rat model. J Neurosurg 83: 539–545

    PubMed  CAS  Google Scholar 

  14. Kawasaki K, Smith RS Jr, Hsieh CM, Sun J, Chao J, Liao JK (2003) Activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway mediates nitric oxide-induced endothelial cell migration and angiogenesis. Mol Cell Biol 23: 5726–5737

    Article  PubMed  CAS  Google Scholar 

  15. Kutluk K, Schumacher M, Mironov A (1991) The role of sinus thrombosis in occipital dural arteriovenous malformations-development and spontaneous closure. Neurochirurgia (Stuttg) 34: 144–147

    CAS  Google Scholar 

  16. Lawton MT, Jacobowitz R, Spetzler RF (1997) Redefined role of angiogenesis in the pathogenesis of dural arteriovenous malformations. J Neurosurg 87: 267–274

    PubMed  CAS  Google Scholar 

  17. Lim M, Cheshier S, Steinberg GK (2006) New vessel formation in the central nervous system during tumor growth, vascular malformations, and Moyamoya. Curr Neurovasc Res 3: 237–245

    Article  PubMed  Google Scholar 

  18. Marchuk DA, Srinivasan S, Squire TL, Zawistowski JS (2003) Vascular morphogenesis: tales of two syndromes. Hum Mol Genet 12: R97–R112

    Article  PubMed  CAS  Google Scholar 

  19. Massoud TF, Ji C, Viñuela F, Guglielmi G, Robert J, Duckwiler GR, Gobin YP (1994) An experimental arteriovenous malformation model in swine: anatomic basis and construction technique. Am J Neuroradiol 15: 1537–1545

    Google Scholar 

  20. Massoud TF, Ji C, Vinuela F, Turjman F, Guglielmi G, Duckwiler GR, Gobin YP (1996) Laboratory simulations and training in endovascular embolotherapy with a swine arteriovenous malformation model. Am J Neuroradiol 17: 271–279

    PubMed  CAS  Google Scholar 

  21. Morgan MK, Anderson RE, Sundt TM Jr (1989) The effects of hyperventilation on cerebral blood flow in the rat with an open and closed carotid-jugular fistula. Neurosurgery 25: 606–612

    Article  PubMed  CAS  Google Scholar 

  22. Morgan MK, Anderson RE, Sundt TM Jr (1989) A model of the pathophysiology of cerebral arteriovenous malformations by a carotid-jugular fistula in the rat. Brain Res 496: 241–250

    Article  PubMed  CAS  Google Scholar 

  23. Murayama Y, Massoud TF, Viñuela F (1998) Hemodynamic changes in arterial feeders and draining veins during embolotherapy of arteriovenous malformations: an experimental study in a swine model. Neurosurgery 43: 96–106

    Article  PubMed  CAS  Google Scholar 

  24. Nagasawa S, Kawanishi M, Kondoh S, Kajimoto S, Yamaguchi K, Ohta T (1996) Hemodynamic simulation study of cerebral arteriovenous malformations. Part 2. Effects of impaired autoregulation and induced hypotension. J Cereb Blood Flow Metab 16: 162–169

    Article  PubMed  CAS  Google Scholar 

  25. Ozawa CR, Banfi A, Glazer NL, Thurston G, Springer ML, Kraft PE, McDonald DM, Blau HM (2004) Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J Clin Invest 113: 516–527

    PubMed  CAS  Google Scholar 

  26. Pietilä TA, Zabramski JM, Thállier-Janko A, Duveneck K, Bichard WD, Brock M, Spetzler RF (2000) Animal model for cerebral arteriovenous malformation. Acta Neurochir (Wien) 142: 1231–1240

    Article  Google Scholar 

  27. Quick CM, Leonard EF, Young WL (2002) Adaptation of cerebral circulation to brain arteriovenous malformations increases feeding artery pressure and decreases regional hypotension. Neurosurgery 50: 167–175

    Article  PubMed  Google Scholar 

  28. Scharpfenecker M, van Dinther M, Liu Z, van Bezooijen RL, Zhao Q, Pukac L, Löwik CW, ten Dijke P (2007) BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 120: 964–972

    Google Scholar 

  29. Scott BB, McGillicuddy JE, Seeger JF, Kindt GW, Giannotta SL (1978) Vascular dynamics of an experimental cerebral arteriovenous shunt in the primate. Surg Neurol 10: 34–38

    PubMed  CAS  Google Scholar 

  30. Spetzler RF, Wilson CB, Weinstein P, Mehdorn M, Townsend J, Telles D (1978) Normal perfusion pressure breakthrough theory. Clin Neurosurg 25: 651–672

    PubMed  CAS  Google Scholar 

  31. Stiver SI, Tan X, Brown LF, Hedley-Whyte ET, Dvorak HF (2004) VEGF-A angiogenesis induces a stable neovasculature in adult murine brain. J Neuropathol Exp Neurol 63: 841–855

    PubMed  CAS  Google Scholar 

  32. Terada T, Higashida RT, Halbach VV, Dowd CF, Tsuura M, Komai N, Wilson CB, Hieshima GB (1994) Development of acquired arteriovenous fistulas in rats due to venous hypertension. J Neurosurg 80: 884–889

    Article  PubMed  CAS  Google Scholar 

  33. TerBrugge KG, Lasjaunias P, Hallacq P (1991) Experimental models in interventional neuroradiology. Am J Neuroradiol 12: 1029–1033

    PubMed  CAS  Google Scholar 

  34. Xu B, Wu YQ, Huey M, Arthur HM, Marchuk DA, Hashimoto T, Young WL, Yang GY (2004) Vascular endothelial growth factor induces abnormal microvasculature in the endoglin heterozygous mouse brain. J Cereb Blood Flow Metab 24: 237–244

    Article  PubMed  CAS  Google Scholar 

  35. Yang GY, Betz AL (1994) Reperfusion-induced injury to the blood-brain barrier after middle cerebral artery occlusion in rats. Stroke 25: 1658–1665

    PubMed  CAS  Google Scholar 

  36. Yu J, deMuinck ED, Zhuang Z, Drinane M, Kauser K, Rubanyi GM, Qian HS, Murata T, Escalante B, Sessa WC (2005) Endothelial nitric oxide synthase is critical for ischemic remodeling, mural cell recruitment, and blood flow reserve. Proc Natl Acad Sci USA 102: 10999–11004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this paper

Cite this paper

Su, H. et al. (2008). Development of a cerebral microvascular dysplasia model in rodents. In: Zhou, LF., et al. Cerebral Hemorrhage. Acta Neurochirurgica Supplementum, vol 105. Springer, Vienna. https://doi.org/10.1007/978-3-211-09469-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-09469-3_36

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-09468-6

  • Online ISBN: 978-3-211-09469-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics