Classical Turbulence in Cryogenic Helium

  • Joseph J. Niemela
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 501)


Fluid turbulence is important in numerous applications, and is a model system for nonlinear systems with many degrees of freedom. The equations of motion are not easily amenable to analysis and for this reason progress in the field requires significant effort in experiments and in numerical simulations. In recent years, some progress has been made utilizing helium at low temperatures, enabling high-Reynolds number turbulence to be generated in laboratory experiments. With high Reynolds numbers, however, come new challenges for measurement.


Reynolds Number Fluid Dynamics Nonlinear System Laboratory Experiment Significant Effort 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. G. Ahlers, Phys. Rev. E. 63, 015303 (2001).CrossRefGoogle Scholar
  2. R.A. Antonia, A.J. Chambers, S. Rajagopalan, K.R. Sreenivasan, C.A. Friehe, J. Phys. Ocean. 8, 28 (1978).CrossRefGoogle Scholar
  3. R.A. Antonia, B.R. Satyaprakash, A.K.M.F. Hussain, J. Fluid Mech. 119, 55 (1982).CrossRefGoogle Scholar
  4. A. Arneodo, C. Baudet, F. Belin, R. Benzi, B. Castaing, B. Chabaud, R. Chavarria, S. Ciliberto, R. Camussi, F. Chilla, B. Dubrulle, Y. Gagne, B. Hebral, J. Herweijer, M. Marchand, J. Maurer, J.F. Muzy, A. Naert, A. Noullez, J. Peinke, F. Roux, P. Tabeling, W. van de Water, H. Willaime, Europhys. Lett. 34, 411 (1996).CrossRefGoogle Scholar
  5. G.K. Batchelor, The Theory of Homogeneous Turbulence, Cambridge University Press (1953)Google Scholar
  6. A. Bershadskii, J.J. Niemela, K.R. Sreenivasan, Phys. Lett. A 331, 15 (2004).zbMATHCrossRefGoogle Scholar
  7. E. Brown, A. Nikolaenko, D. Funfschilling, G. Ahlers, Phys. Fluids 17, 075108 (2005).CrossRefGoogle Scholar
  8. E. Brown, A. Nikolaenko, G. Ahlers, Phys. Rev. Lett. 95, 084503 (2005).CrossRefGoogle Scholar
  9. F.H. Busse, Rep. Prog. Phys. 41, 1929 (1978).CrossRefGoogle Scholar
  10. B. Castaing, G. Gunaratne, F. Heslot, L. Kadanoff, A. Libchaber, S. Thomae, X.-Z. Wu, S. Zaleski, G. Zanetti, J. Fluid Mech. 204, 1 (1989).CrossRefGoogle Scholar
  11. O. Chanal, B. Baguenard, O. Bethoux, B. Chabaud, Rev. Sci. Instrum. 68, 2442 (1997).CrossRefGoogle Scholar
  12. X. Chavanne, F. Chilla, B. Chabaud, B. Castaing, B. Hebral, Phys. Fluids 13, 1300 (2001).CrossRefGoogle Scholar
  13. S. Cioni, S. Ciliberto, J. Sommeria, J. Fluid Mech. 335, 111 (1997).CrossRefMathSciNetGoogle Scholar
  14. P. Constantin, C.R. Doering, J. Stat. Phys. 94, 159 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  15. S. Corrsin, in Handbuch der Physik, eds. S. Flugge and C. Truesdell, Springer, Berlin, 8, part 2, p. 524 (1963).Google Scholar
  16. P.P. Craig, J.R. Pellam, Phys. Rev. 108, 1109 (1957).CrossRefGoogle Scholar
  17. P.A. Davidson, Turbulence: An Introduction for Scientists and Engineers. Oxford University Press, Oxford (2004).zbMATHGoogle Scholar
  18. R.J. Donnelly (ed.), High Reynolds number flows using liquid and gaseous helium. Springer-Verlag, New York (1991).Google Scholar
  19. Y.B. Du, P. Tong, J. Fluid Mech. 407, 57 (2000).zbMATHCrossRefGoogle Scholar
  20. V. Emsellem, L.P. Kadanoff, D. Lohse, P. Tabeling, Z. Wang, Phys. Rev. E 55, 2672 (1997).CrossRefGoogle Scholar
  21. G. Falkovich, K.R. Sreenivasan, Physics Today 59, 43 (2006)CrossRefGoogle Scholar
  22. U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University Press (1995).Google Scholar
  23. G.A. Glatzmaier, R.C. Coe, L. Hongre, P.H. Roberts, Nature 401, 885 (1999).CrossRefGoogle Scholar
  24. S. Grossmann, D. Lohse, Phys. Lett. A 174, 449 (1993).CrossRefGoogle Scholar
  25. S. Grossmann, D. Lohse, Phys. Rev. Lett. 86, 3316 (2001).CrossRefGoogle Scholar
  26. A. Gylfason, A. Ayyalasomayajula, Z. Warhaft, J. Fluid Mech. 501, 213 (2004).zbMATHCrossRefGoogle Scholar
  27. L.N. Howard, in Proc. 11 th Intern. Cong. Appl. Mech. (ed. H. Gortler), Springer, Berlin, p. 1109 (1966).Google Scholar
  28. R.C. Hwa, C.B. Yang, S. Bershadskii, J.J. Niemela, K.R. Sreenivasan, Phys. Rev. E 72, 066308 (2005).CrossRefGoogle Scholar
  29. J.C. Kaimal, J.C. Wyngaard, D.A. Hsugen, O.R. Cote, Y. Izumi, S.J. Caughey, C.J. Readings, J. Atmos. Sci. 33, 2152 (1976).CrossRefGoogle Scholar
  30. Y. Kaneda, T. Ishihara, M. Yokakawa, M. Itakura, A. Uno, Phys. Fluids 15, L21 (2003).CrossRefGoogle Scholar
  31. A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 9 (1941).Google Scholar
  32. R.H. Kraichnan, Phys. Fluids 5, 1374 (1962).CrossRefGoogle Scholar
  33. B.B. Mandelbrot, Scientific American 280, 50 (1999).CrossRefGoogle Scholar
  34. W.V.R. Malkus, Proc. R. Soc. Lond. A 225, 196 (1954).zbMATHCrossRefMathSciNetGoogle Scholar
  35. M.P. Marder, Condensed Matter Physics, Wiley, New York (2000).Google Scholar
  36. J. Maurer, P. Tabeling, Europhys. Lett, 43, 29 (1998).CrossRefGoogle Scholar
  37. A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics, vol. 2, MIT Press, Cambridge, USA (1975).Google Scholar
  38. J.J. Niemela, L. Skrbek, K.R. Sreenivasan, R.J. Donnelly, Nature 404, 837 (2000).CrossRefGoogle Scholar
  39. J.J. Niemela, L. Skrbek, K.R. Sreenivasan, R.J. Donnelly, J. Fluid Mech. 449, 169 (2001).zbMATHCrossRefGoogle Scholar
  40. J.J. Niemela, K.R. Sreenivasan, J. Fluid. Mech. 481, 355 (2003).zbMATHCrossRefGoogle Scholar
  41. J.J. Niemela, K.R. Sreenivasan, J. Fluid Mech. 557 411, 2006.zbMATHCrossRefGoogle Scholar
  42. J.J. Niemela and K.R. Sreenivasan, J. Low Temp. Phys. 146, 499 (2007).CrossRefGoogle Scholar
  43. National Research Council Report: Condensed Matter and Materials Physics: Basic Research for Tomorrow’s Technology, 308 pages, National Academy Press (1999).Google Scholar
  44. A. Oberbeck, Annalen der Physik und Chemie 7, 271 (1879).CrossRefGoogle Scholar
  45. G. Paladin, A. Vulpiani, Phys. Rev. A 35, 1971 (1987).CrossRefGoogle Scholar
  46. X.L. Qui, P. Tong, Phys. Rev. E 64, 036304 (2002).Google Scholar
  47. P. Roche, B. Castaing, B. Chabaud, B. Hebral, J. Sommeria, Europhys. J. 24, 405 (2001).Google Scholar
  48. P.E. Roche, B. Castaing, B. Chabaud, B. Hebral, J. Low Temp. Phys. 134, 1011 (2004).CrossRefGoogle Scholar
  49. J. Schumacher, K.R. Sreenivasan, V. Yakhot, submitted (2006).Google Scholar
  50. J. Schumacher, K.R. Sreenivasan, P.K. Yeung, J. Fluid Mech. 531, 113 (2005).zbMATHCrossRefMathSciNetGoogle Scholar
  51. E.M. Sparrow, R.B. Husar, R.J. Goldstein, J. Fluid Mech. 41, 793 (1970).CrossRefGoogle Scholar
  52. E.M. Spiegel, Ann. Rev. Astron. Astrophys. 9, 323 (1971).CrossRefGoogle Scholar
  53. K.R. Sreenivasan, Phys. Fluids 27, 1048 (1984).CrossRefGoogle Scholar
  54. K.R. Sreenivasan, Phys. Fluids 7, 2778 (1995).zbMATHCrossRefMathSciNetGoogle Scholar
  55. K.R. Sreenivasan, Phys. Fluids 10, 528 (1998).zbMATHCrossRefMathSciNetGoogle Scholar
  56. K.R. Sreenivasan, Rev. Mod. Phys. 71, S383 (1999).CrossRefGoogle Scholar
  57. K.R. Sreenivasan, Flow, Turbulence and Combustion 72, 115 (2004)zbMATHCrossRefGoogle Scholar
  58. K.R. Sreenivasan, R.A. Antonia, Annu. Rev. Fluid. Mech. 29, 435 (1997).CrossRefMathSciNetGoogle Scholar
  59. K.R. Sreenivasan, A. Bershadskii, J. Fluid Mech. 554, 477 (2006).zbMATHCrossRefGoogle Scholar
  60. K.R. Sreenivasan, A. Bershadskii, J.J. Niemela, Phys. Rev. E 65, 056306 (2002).CrossRefGoogle Scholar
  61. K.R. Sreenivasan, A. Bershadskii, J.J. Niemela, Physica A 340, 574 (2004).CrossRefGoogle Scholar
  62. K.R. Sreenivasan, R.J. Donnelly, Adv. Appl. Mech. 37, 239–276 (2001).CrossRefGoogle Scholar
  63. K.R. Sreenivasan, B. Dhruva, Prog. Theor. Phys. 130, 103 (1998).CrossRefMathSciNetGoogle Scholar
  64. K.R. Sreenivasan, C. Meneveau Phys. Rev. A 38, 6287 (1988).CrossRefGoogle Scholar
  65. C. Sun, K.-Q. Xia, and P. Tong, Phys. Rev. E 72, 026302 (2005).CrossRefGoogle Scholar
  66. P. Tabeling, H. Willaime, Phys. Rev. E 65, 066301 (2002).CrossRefMathSciNetGoogle Scholar
  67. P. Tabeling, G. Zocchi, F. Belin, J. Maurer, H. Willaime, Phys. Rev. E 53 1613 (1996).CrossRefGoogle Scholar
  68. H. Tennekes, J.L. Lumley, A First Course in Turbulence, MIT Press, Cambridge, Ma. (1971).Google Scholar
  69. S.A. Theerthan, J.H. Arakeri, J. Fluid Mech. 373, 221 (1998).zbMATHCrossRefGoogle Scholar
  70. D.C. Threlfall, J. Fluid Mech. 67, 17 (1975).CrossRefGoogle Scholar
  71. D.J. Tritton, Physical Fluid Dynamics, Clarendon Press, Oxford (1988).Google Scholar
  72. R. Verzicco, J. Fluid Mech. 473, 201 (2002).zbMATHCrossRefGoogle Scholar
  73. R. Verzicco, Phys. Fluids 16, 1965 (2004).CrossRefGoogle Scholar
  74. E. Villermaux, Phys. Rev. Lett. 75, 4618 (1995).CrossRefGoogle Scholar
  75. W.F. Vinen, J.J. Niemela, J. Low Temp. Phys. 128, 167 (2002).CrossRefGoogle Scholar
  76. W.-Z. Wu, Ph.D. thesis, University of Chicago, Chicago (1991)Google Scholar
  77. V. Yakhot, K.R. Sreenivasan, Physica A 343, 147 (2004).MathSciNetGoogle Scholar
  78. V. Yakhot, K.R. Sreenivasan, J. Stat. Phys. 121, 823 (2005).zbMATHCrossRefMathSciNetGoogle Scholar
  79. M.V. Zagarola, A.J. Smits, Phys. Rev. Lett. 78, 239 (1997).CrossRefGoogle Scholar

Copyright information

© CISM, Udine 2008

Authors and Affiliations

  • Joseph J. Niemela
    • 1
  1. 1.The Abdus Salam International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations